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Introduction: 

Let us consider two particles collides each other and we are trying to detect them before and after 
collision. What would happen? 

1. If these two particles were simple bowling balls having different colors or different 
masses we do not have any trouble in identifying the path of each ball before, during and 
after collision.  

2. Even if the balls were completely identical we could still track their separate trajectories 
as long as we can know the position and momentum of each balls simultaneously.  

3. Now let us thinking about the collisions between two protons or two neutrons or two 
electros i.e the collision between two identical sub-atomic particles.  

4. These particles are perfectly identical in every way.  
5. According to uncertainty principle one cannot track the exact position and momentum of 

each particle.  
6. We could not able to detect which particles enters detector after collision.  
7. Finite extent of each particle wave functions leads to overlapping wave functions around 

collision region and we can’t know which wave function belongs to which particle. 

By identical particles we mean that the particles which cannot be distinguished by means of their 
inherent properties like mass, spin etc. In general identical particles are broadly categorized in 
two groups: 

(i) Classical particles. These particles are identical but distinguishable due to their 
classical nature. Example: two identical balls of same colour. 

(ii) Quantum particles. These particles are identical but indistinguishable due to their 
quantum mechanical nature. Example: Electrons, Protons, Neutrons etc. 
      

The Spin-Statistics Theorem: Identical indistinguishable particles are again broadly categorized 
in two groups on the basis of their intrinsic spin. 

Category-I: Bosons  

Systems of identical particles with integer spin (s = 0, 1, 2,--------), known as bosons. The total 
wave function of the system of bosons is symmetric under interchange of any pair of particle 
positions. The wave function is said to obey Bose-Einstein statistics.  

Category-II: Fermions 

Systems of identical particles with half-odd-integer spin (s = 1/2, 3/2,-------), known as fermions. 
The total wave function of the system of bosons is anti-symmetric under interchange of any pair 
of particle positions. The wave function is said to obey Fermi-Dirac statistics. 



When particles are indistinguishable: 

Identical particles also called indistinguishable particles are particles that cannot be distinguished 
from one another. Identical or indistinguishable particles behaviors can be studied using quantum 
mechanical approach as explained below. 

 Let us consider a system of two electrons. The Hamiltonian for the system of two electrons 
leveled as 1 and 2 is given by 

𝐻(1,2) = 
ොభ

మ

ଶ
 + 

ොమ
మ

ଶ
 + 𝑉 (𝑟ଵ, 𝑟ଶ)    (1) 

where 𝑚 is the mass of each electron. As the particles are indistinguishable Hamiltonian of the 
system must be invariant under particle exchange i.e,  

𝐻(1,2) = 𝐻(2,1)      (2) 

If equation (2) does not hold we would get differences in the measurement and that differences 
put us in violation of uncertainty principle. For the system of identical particles the energy 
remains same with particle exchange: i.e.  

𝐻(1,2) Ψ(�⃗�ଵ, �⃗�ଶ) = E Ψ(�⃗�ଵ, �⃗�ଶ)    (3) 

and 

𝐻(2,1) Ψ(�⃗�ଶ, �⃗�ଵ) = E Ψ(�⃗�ଶ, �⃗�ଵ)    (4) 

Equality of 𝐻 (1,2) and 𝐻 (2,1) does not imply that Ψ(�⃗�ଵ, �⃗�ଶ) and Ψ(�⃗�ଵ, �⃗�ଶ) are equal.  

According to quantum mechanics: 

1. |Ψ (�⃗�ଵ, �⃗�ଶ)|2 is the probability density of the state for particle 1 to be at �⃗�ଵ when particle 2 
to be at �⃗�ଶ.  

2. Similarly |Ψ (�⃗�ଶ, �⃗�ଵ)|2 is the probability density of the state for particle 1 to be at �⃗�ଶ when 
particle 2 to be at �⃗�ଵ.  

3. These two probabilities are not necessarily same.  

But we require that probability density do not depend on how we label particles. 

Since 𝐻(1, 2) = 𝐻(2,1), the following equations must hold that  

𝐻(1, 2) Ψ(�⃗�ଵ, �⃗�ଶ) = 𝐻(2,1) Ψ(�⃗�ଵ, �⃗�ଶ) = E Ψ(�⃗�ଵ, �⃗�ଶ)   (5) 

and similarly  

𝐻(1, 2) Ψ(�⃗�ଶ, �⃗�ଵ) = 𝐻(2,1) Ψ(�⃗�ଶ, �⃗�ଵ) = E Ψ(�⃗�ଶ, �⃗�ଵ)   (6) 



Both Ψ (�⃗�ଵ, �⃗�ଶ) and Ψ (�⃗�ଶ, �⃗�ଵ) share same energy Eigen value E, so any linear combination of 

Ψ(�⃗�ଵ, �⃗�ଶ) and Ψ(�⃗�ଶ, �⃗�ଵ) will be a Eigen state of 𝐻 having same energy eigen value E. However a 
linear combination of Ψ(�⃗�ଵ, �⃗�ଶ) and Ψ(�⃗�ଶ, �⃗�ଵ) may or may not preserves indistinguishability. 

Particle Exchange Operator: 

The particle exchange operator denoted as 𝑃ଵଶis defined by the following relation 

𝑃ଵଶ Ψ (𝑟ଵ, 𝑠ଵ;  𝑟ଶ, 𝑠ଶ) = Ψ (𝑟ଶ, 𝑠ଶ; 𝑟ଵ, 𝑠ଵ)    (1) 

Where 𝑟ଵ 𝑎𝑛𝑑 𝑟ଶ are the position vector of particle 1 and 2 respectively and 𝑠ଵ 𝑎𝑛𝑑 𝑠ଶ are their 
respective spin vectors. The function of the particle exchange operator is to interchange the 
subscripts of the positions and spins for particles 1 and 2 of the composite wave function. If the 
two particles are truly identical then the Hamiltonian of the system must be symmetric with 
respect to the position and spin of the individual particles. 

Eigen functions and energy eigen value of the Particle Exchange Operator: 

Let ‘k’ be the eigen value of the particle exchange operator 𝑃ଵଶ in the state Ψ(1,2).  Here Ψ(1,2) 
is the state of the system of particles 1 and 2. Therefore the eigen value equation for the particle 

exchange operator 𝑃ଵଶ is  

𝑃ଵଶ Ψ(1,2) = k Ψ(1,2)     (1) 

Operating equation (1) by 𝑃ଵଶ again we get  

𝑃ଵଶ
ଶ
 Ψ(1,2) = 𝑃ଵଶ 𝑃ଵଶ Ψ(1,2) = 𝑃ଵଶ k Ψ(1,2) 

= k𝑃ଵଶΨ(1,2) = k k Ψ(1,2) = k2 Ψ(1,2) 

                            𝑃ଵଶ
ଶ
 Ψ(1,2) = k2 Ψ(1,2)                    (2) 

From the definition of particle exchange operator we have 

𝑃ଵଶ Ψ(1,2) = Ψ(2,1) 

Operating again by 𝑃ଵଶwe get  

𝑃ଵଶ
ଶ
 Ψ(1,2) = 𝑃ଵଶ 𝑃ଵଶ Ψ(1,2) = 𝑃ଵଶ Ψ(2,1) = Ψ(1,2)       (3) 

From equations (2) and (3) we get  

k2 Ψ(1,2) = Ψ(1,2) 

or k2 = 1 



or k = ± 1 

Thus the eigen value of the particle exchange operator are ± 1.  

Symmetric and anti-symmetric wave function:  

Let us consider a system of n identical indistinguishable particles. The wave function of the 
system consisting of n particles is Ψ(1,2,3,4……….n, t). The Schrödinger equation for the above 
system of particles is written as 

𝐻(1,2,3……………n) Ψ(1,2,3………..n, t) = iℏ
డ

డ௧
 Ψ(1,2,3……………, t)  (1) 

where each of the numbers represents all the position and spin coordinates of one of the particles. 

As the particles are identical, Hamiltonian 𝐻  of the system is symmetrical in its arguments. Two 
types of solutions of equation (1) are possible for the wave function of Ψ; namely (i) Symmetric 
wave function and (ii) anti-symmetric wave function.   

(i) Symmetric wave function (ΨS) 
(ii) Anti-symmetric wave function (ΨA)   

Symmetric wave function (ΨS): A wave function is said to be symmetric if the interchange 
between any pair of particles among its arguments do not change the sign of the wave function.  

 Anti-symmetric wave function (ΨA): A wave function is said to be anti-symmetric if the 
interchange between any pair of particles among its arguments change the sign of the wave 
function.  This may be seen as follows: 

Let ΨS = Ψ(1,2) +  Ψ(2,1) and ΨA = Ψ(1,2)  -  Ψ(2,1). 

Therefore 

𝑃ଵଶ ΨS = 𝑃ଵଶ [Ψ(1,2) +  Ψ(2,1)] = 𝑃ଵଶ Ψ(1,2) +  𝑃ଵଶΨ(2,1) 

= Ψ(2,1) + Ψ(1,2) = Ψ(1,2) +  Ψ(2,1) = ΨS 

Or,  𝑃ଵଶ ΨS =   ΨS 

Similarly 

𝑃ଵଶ ΨA = 𝑃ଵଶ [Ψ(1,2) -  Ψ(2,1)] = 𝑃ଵଶ Ψ(1,2) -  𝑃ଵଶΨ(2,1) 

= Ψ(2,1) - Ψ(1,2) = - [Ψ(1,2) -  Ψ(2,1)] = - ΨA 

Or,  𝑃ଵଶ ΨA = - ΨA 



If we apply such an interchange operator (𝑃ଵଶ ) twice on the wave function of the system 
consisting two particles, brings back to their original configuration and hence produces no 
change in the wave function. 

Commutation relation of 𝑷𝟏𝟐 with 𝑯 : 

We know that 

𝑃ଵଶ Ψ(1,2) = Ψ(2,1) 

Therefore 𝑃ଵଶ 𝐻(1, 2) Ψ(1,2) = 𝐻(2,1) Ψ(2,1) = 𝐻(1, 2) Ψ(2,1)      As 𝐻(1, 2) = 𝐻(2,1) 

= 𝐻(1, 2) 𝑃ଵଶ Ψ(1,2) 

Or [𝑃ଵଶ 𝐻(1, 2) - 𝐻(1, 2) 𝑃ଵଶ] Ψ(1,2) = 0 

Or [𝑃ଵଶ 𝐻(1, 2) - 𝐻(1, 2) 𝑃ଵଶ] = 0 

Or [𝑃ଵଶ , 𝐻(1, 2)] = 0 

Thus the particle exchange operator commutes with the Hamiltonian of the system. 

  

 

 

 

 

 

 

     

 

 

 

  

       


