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CHAPTER 2

ION-SOLVENT
INTERACTIONS

2.1. INTRODUCTION

An electrochemical system (Fig. 2.1) includes two interfaces, at each
one of which an electronic conductor is in contact with an ionic conductor
(or electrolyte’). The electronic conductor is generally a metal but may
well be a semiconductor. The ionic conductor, as the term suggests, is a
material which consists of mobile ions.

How does one produce a medium of mobile ions? One method is
based on the fact that certain substances, which, in the pure form, do not
contain any significant concentration of ions, are able to interact to produce
ions. This is how neutral, i.e., nonionic, molecules of water and of acetic
acid interact to give an electrolytic solution of hydrogen ions and acetate
ions (Fig. 2.2 and Table 2.1). This chemical method of producing an ionic
conductor will be studied in Chapter 5.

Another approach is based on starting off with a solid ionic crystal
and reducing the forces which hold the ions together. A stage is reached
when the cohesive forces are so weakened that the ions, which could only

t The term electrolyte is used in electrochemistry to refer not only to the ionically con-
ducting medium through which electricity is passed but also to the substances which,
when dissolved (or melted), give rise to a conducting medium.
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Fig. 2.1. The essential parts of an electrochemical system.

vibrate in the solid, acquire a new degree of freedom—the freedom of
translational motion.

There are two distinct ways in which the interionic forces in a crystal
can be overcome. One method is based simply on an agitational effect.
Heat energy is used to increase the tempo of the ionic vibrations in the
solid until thermal forces prevail and the long-range order of the ionic
arrangement in the crystal lattice is wiped out—the ionic crystal “melts”
(see Chapter 6).

One is left with a pure liquid electrolyte, a molten material teeming
with positive and negative ions and with free space which is far more
plentiful than in the solid. These ions are in ceaseless random motion
and ready to respond to applied electric fields by conducting electricity.
What has been described is a thermal method of obtaining a pure liquid
electrolyte.

There is, however, another way of overcoming the interionic forces in
an ionic crystal and producing mobile ions. This is with the aid of a solvent.
A crystal of potassium chloride, e.g., is placed in water. Soon it becomes
apparent that the crystal as an entity has disappeared. The solvent has
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Fig. 2.2. The chemical method of producing ionic solutions.
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TABLE 21

lonic Concentrations in Pure Water, Pure Acetic Acid,
and Acetic Acid Solution

Ionic concentration
g-ions liter~! at 25°C

Pure water 10-7
Pure acetic acid 10-5-5
0.1N acetic acid solution 10-3

enticed the ions out of the solid so that they can wander off into the solvent
(Fig. 2.3). (The Greek word for wanderer is ion.) One has witnessed the
process of dissolution of an ionic crystal.

What are the influences which the solvent brings to bear upon the
ions of the crystal? What are the 1on-solvent forces which overcome the
ion-ion forces holding together the crystal?

It is obvious that questions such as these are of central significance to
the understanding of ionic solutions and, hence, the electrochemical proc-
esses which occur in them. For the questions imply that ions in solution
are constantly affected by ion-solvent forces, and that, to understand the
behavior of ions inside an electrolytic solution, one has to reckon with
the forces arising from the presence of the solvent. One must understand
ion-solvent interactions.

NP a5

Water molecule

Fig. 2.3. Dissolution of an ionic crystal by the action of a solvent.
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2.2. THE NONSTRUCTURAL TREATMENT OF ION-SOLVENT
INTERACTIONS

2.2.1. A Quantitative Measure of lon-Solvent Interactions

A field of study often undergoes a qualitative change when the concepts
used can be associated with numbers and made quantitative. The problem,
therefore, is to develop a quantitative measure of ion-solvent interactions.
This type of problem is a common one in chemistry. It is often solved by
considering two situations or states, one where the interactions operate
(are “switched on’”) and the other where they do not exist (are “switched
off’), and then computing the free-energy difference AG;_g between the
two states (Fig. 2.4).

In the case of ion-solvent interactions, the state in which the interac-
tions exist is an obvious one; it is the situation in which ions are inside
the solvent. Ions are charged particles, and charges interact with other
charges. So there will also be ion-ion, as well as ion-solvent, interactions
in the solution. But the former are excluded in the quantitative analysis
of ion-solvent interactions; they will be given separate consideration later
on (Chapter 3).

Now, what is a situation in which there are no ion-solvent interac-
tions? Obviously, one in which there is no solvent. Hence, one must consider
an initial state in which there are large spaces between individual ions,
and nothing else present. The initial state, therefore, is that of ions in
vacuum at an infinitely low pressure.

The problem, therefore, is to consider the free-energy change for the
transfer of ions from vacuum to solution (Fig. 2.5).

Ions in vacuum — Ions in solution.

Recall, however, the thermodynamic relation (¢f. Appendix 2.1) which
states that, in a reversible process taking place at constant temperature and
pressure, the free-energy change is equal to the net work done on the sys-
tem, i.e., the total work done other than the work of producing a volume
change.

Initigl state Final state
. Free ener
No ion-solvent 9y - Ton-solvent
change, 4G, _;
Interactions Interactions

Fig. 2.4. The free-energy change arising from ion—solvent interactions.
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Fig. 2.5. The free energy of ion—solvent interactions
is the free-energy change resulting from the transfer of
ions from vacuum into solution.

Hence, the basic problem of deriving an expression for the free energy
of ion-solvent interaction can be defined as follows. What is the work done
when one transfers an ion from vacuum into a position deep inside the
solvent? This work will include the energy of all the interactions between
the ion and the surrounding solvent, for example, water.

2.2.2. The Born Model: A Charged Sphere in a Continuum

A moment’s thought will reveal that, to work out exactly all the ion-
solvent interactions, one must know the structure of the solvent, i.e., the
dispositions of all the particles constituting the solvent and the forces
between the ion and these particles. But the solvent, e.g., water, may have
a fairly complex structure. To understand this structure, one must be able
to answer a vast number of questions. For example, are there discrete
solvent molecules, or are they associated to such an extent that one should
not speak of separate molecules? What do the ions do to the solvent struc-
ture? Do they disrupt it, or are there spaces inside the structure so that
ions can be smuggled in but cause little damage to it?

The problem seems insuperable, but one can resort to modelistic think-
ing. Models are simplified representations of the real microstructure of
nature, often as mental pictures derived from the macroscopic world. They
are intended to reproduce approximately the essential features of the real
situation. The better they are able to predict experimental quantities, the
better do they serve as aids to thinking about how nature really works.

An example of a very crude and approximate model for ion-solvent
interactions is that suggested by Born in 1920. In the Born model, an ion
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Fig. 2.6. The Born model for ion—solvent interactions considers (a) an ion
equivalent to a charged sphere and (b) the structured solvent equivalent to a
structureless continuum.

is viewed as a rigid sphere (of radius r;) bearing a charge z;e, (e, is the
electronic charge), and the solvent is taken to be a structureless continuum
(Fig. 2.6). Thus, the problem of ion-solvent interaction assumes the follow-
ing form: What is the work done in transferring a charged sphere from
vacuum into a continuum (Fig. 2.7)?

By considering a charged sphere equivalent to an ion, the Born model
is assuming that it is only the charge on the ion (or charged sphere) that is
responsible for ion—solvent interactions. The interactions between the solvent
and the ion are considered to be solely electrostatic in origin.

The Born model suggests a simple thought process for calculating the
free energy AG;_g of ion-solvent interactions, i.e., the work of transferring
an ion from vacuum into the solvent (Fig. 2.8). One uses a thermodynamic
cycle. The basic idea behind a thermodynamic cycle is the law of the con-
servation of energy. If one starts with a certain system (say, an ion in
vacuum) and then goes through a hypothetical cycle of changes, ending up
with the starting condition (i.e., the ion in vacuum), then the algebraic
sum of all the energies involved in the various steps must be zero. The
particular cycle that will be used is the following: (1) The ion (or charged
sphere) is first considered in a vacuum, and the work W, of stripping it
of its charge z;e, 1s computed. (2) This uncharged sphere is slipped into the
solvent; this process will involve no work, i.e., W, = 0 because the only
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Fig. 2.7. The Born model views the free energy of ion—solvent interactions as
equal to the work of transferring a charged sphere (of radius r; and charge z;¢,) from
vacuum into a continuum (of dielectric constant &g).
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Fig. 2.8. Method of calculating the work of transferring a
charged sphere from vacuum into the solvent by a thermo-
dynamic cycle.
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interactional work is assumed to arise from the charge on the ion." (3) Then,
the charge on the sphere inside the solvent is restored to the full value
z,e,—one says, the sphere is charged up to the value z;e,—, and the charg-
ing work W, is computed. (4) Finally, the ion is transferred from the
solvent to vacuum. Since this transfer process is opposite to that involved
in the definition of the free energy A4G;_g of ion-solvent interactions, the
work W, associated with this last step of the cycle, i.e., the transfer of an
ion from the solvent to vacuum, yields —AG;_g.

Now, if the algebraic sum of the work terms associated with the steps
of the cycle is set equal to zero, one gets

W, + W,+ W,+ W, =0

or
Work of dischargin Work of chargin
. . gg+0+ . . gg_‘AGz_szo
ion in vacuum ion in solvent
le.,
Work of dischargin Work of chargin
4Gy = it =he @.1)

ion in vacuum ion in solvent

2.2.3. The Electrostatic Potential at the Surface of a Charged
Sphere

In considering the work of charging up a sphere in a vacuum, one
starts off from the definition of electrostatic potential. To facilitate the
definition, it is assumed that there exists a reservoir of charge at an infinite
distance away from the sphere under consideration.

The electrostatic potential y at a point in space is then defined as the
work done to transport a unit positive charge from infinity up to that point.
Thus, the potential yp, at a distance r from a charged sphere is the work
done to transport a unit positive charge from infinity up to a distance r
from the sphere. The reason there is a need to do work is that the charged
sphere exerts an electric force on the charge being transported. The mag-
nitude of the potential, | , |, i.e., the work done on the unit charge, is
given by the electric field X, (i.e., the electric force operating on the unit
charge) times the distance r through which the charge is carried

| v, | = X,or (2.2)

t What happens when charges cross interfaces is discussed in Section 7.2.
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Fig. 2.9. The relative directions of the field due to a charged sphere, of the
movement of the test charge, and of increasing electrostatic potential.

The sign of the potential y, is thought out as follows. Suppose the
sphere is charged positively. Then it exerts a repulsive force on the unit
positive charge, and the potential y,, the work which has to be done by
an external agency in transporting the unit positive charge, i.e., overcoming
the repulsive interaction, will be taken to be positive. But the electric force
of the charged sphere on the unit positive charge, i.e., the field, acts in a
direction opposite to that in which the charge is being moved (Fig. 2.9).
Since both the field and the direction of transport are vectors (quantities
with direction and magnitude) and since the vectors point in opposite
ways, their product is negative.’ Hence, to relate the positive potential v,
to the product of the field and distance, it is necessary to state that

Y= —Xpor (2.3)

Equation (2.2) for the electrostatic potential is valid only if the field
X, acting on the unit positive charge remains the same, independent of the
distance of the unit charge from the source of the field. Suppose, however,
as will be seen to be the case with the field due to a charged sphere, the
field varies with distance from the source of the field. Then one must allow
for the inconstancy of the field in the definition of the potential at a point.
What one does is to take the field X, as a constant over an infinitesimally
short distance dr. In this case, the electrostatic potential v, at a point r is
obtained by summing up all the little bits of work, X, dr, as the unit charge
is carried from infinity up to the point r in steps of length dr, i.e.,

%=—ﬂxw (2.4)

t The product of two vectors 4 and B is ABcos 0, where 0 is the angle between the
two vectors. If the vectors are in opposite directions, § = n and cos @ = —1 and the
product is —A4B.



54 CHAPTER 2

By inserting an upper limit of r; in the integration, one can indicate
that the unit charge has been brought up to the surface of the sphere.
Thus, the electrostatic potential at the surface of the charged sphere is

wn=—f:mw (2.5)

The electric force X, operating on a unit charge in vacuum is obtained
from Coulomb’s law for the electric force F between two charges g, and

gs, 1.e.,

F =2 (2.6)

where r is the distance between the charges. Thus, by setting ¢, = ¢ and
g. = 1, the electric force per unit charge (i.e., the electric field X,) due to a
charge g becomes

x, =2 .7

Substituting for X, in equation (2.5), one gets for the potential at the
surface of the sphere

—+ 4 (2.8)

2.2.4. On the Electrostatics of Charging (or Discharging)
Spheres

The electrostatic potential at the surface of the sphere pertains to the
work of transporting a unit charge to the sphere; hence, the work done in
transporting a charge of any other magnitude is simply given by the product
of the potential and the magnitude of that charge. It will be noticed, how-
ever, that the electrostatic potential at the surface of the sphere varies with
the charge g on the sphere. So the work of adding on any charge to the
sphere depends upon how much charge q the sphere already has. This is
awkward. So the best thing to do is start with an uncharged sphere (g = 0)
and add charge onto it in little driblets or infinitesimal amounts, dg, each
of which requires an infinitesimal amount of work, dw, given by the product
of the potential and the infinitesimal charge dg, i.e.,

dw = Yr, dq (2.9)

This procedure is known as a charging process.
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If, therefore, one starts with an uncharged sphere of radius r; in a
vacuum and slowly builds up the charge from zero to a final value which
can be taken as z;e,, corresponding to a charge on an ion containing z;
electronic charges, then the total work consists of all the little elements of
work, dw, l.e.,

W= f dw = - ¥, dq
0 1
(w0 g _ q® Nz
_fo Fi 4 = [ zri]o
(zi€,)?
= 2.1
o, (2.10)

Obviously, the work of discharging a charged sphere in a vacuum is the
negative of the charging work because, in the discharging process, one is
taking away charge from a charged sphere, i.c.,

(z:€0)?
= 2.11)

13

Wdisch =

Now that the process of discharging a sphere in a vacuum has been
analyzed, one can consider the charging process when the sphere is placed
inside the solvent. The question is: can one use the vacuum formula for
the electrostatic potential at the surface of the sphere, i.e., Eq. (2.8)?

_4
WIi - r;

The answer is no, because this formula was obtained from the expression
for the electric force between two charges in a vacuum and it is known that
the electric force between two charges depends on the medium between
them. The electric force in the presence of a material medium is less than
that which operates when only a vacuum is present. A simple explanation
of this phenomenon is given later on (c¢f. Section 2.5). The ratio of the force
in vacuum to the force in the medium is a characteristic of the medium
and 1s known as its dielectric constant ¢ (Fig. 2.10)

Electric force in vacuum
£ = - - :
Electric force in medium

(2.12)

Hence, the coulombic force between two charges in a medium of dielectric
constant ¢ is

F = N4 (2.13)

er?
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and the electric field becomes
_ 9
X = - (2.14)

Hence, the potential at the surface of the sphere of radius r; placed in a
medium of dielectric constant ¢ is

p =1 (2.15)

In terms of this expression for the electrostatic potential at the surface
of a charged sphere situated in a medium of dielectric constant ¢, the elec-
trostatic work of charging a sphere becomes

Zz”o

Wch. = 1/)’,' dq

. Z‘-eo q
- J’o er; 9

— (zi€0)” (2.16)

28ri

2.2.5. The Born Expression for the Free Energy of lon-Solvent
Interactions

Now that the basic electrostatics of charging and discharging spheres
has been presented, it can be immediately applied to the model suggested
by Born for the calculation of the free energy of ion-solvent interactions.

It has been argued in Section 2.2.2 (see also Fig. 2.8) that the free
energy of ion-solvent interactions, AG;_g, is given by the sum of the work
done to discharge an ion in vacuum and the work done to charge it up in
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the solvent of dielectric constant &,. Since, according to the Born model,
a sphere (of radius r; and charge z;e,) is considered to be equivalent to an
ion of radius r; and charge z;e,, it follows that the work of discharging an
ion in vacuum is equal to the work of discharging the equivalent sphere
in vacuum and the work of charging an ion in the solvent is equal to the
work of charging the equivalent sphere in the solvent. Hence [c¢f. Eq. (2.1)],

AG;_g = Work of discharging equivalent sphere in vacuum

+ Work of charging equivalent sphere in solvent

_ (z:i€0)* (zie0)?

2r; 2¢,r; per ion
1 8t
5 \2
= — (Z;") (1 — 81 ) per ion
3 2
— —NA—(%—er—OL (1 — ai) per mole of ions 2.17)

where N, is the Avogadro number (Fig. 2.11).

Thus, by considering that the free energy of ion-solvent interactions
is given by the net electrostatic work of discharging a sphere (of the same
size and charge as the ion) in a vacuum, of transferring the discharged

Ff"'\.'
{ .J}*f-- Lon Charged
s sphere

Free energy of
ion -solvent
interactions

w 2
ork Of:iz e,) [|—
transfer 2r;

is equivalent to

constant,eg)

SEAHEA0D *
[ ~ Continuum
; Q-if'; (dielectric
‘)l o
~_Structured

solvent

Fig. 2.11. The free-energy change resulting from the transfer of an ion from
a vacuum into the solvent.
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Fig. 2.12. The free energy of ion-solvent
interactions as a function of the reciprocal
of the ionic radius.

sphere into a medium with the same dielectric constant as the solvent,
and of then charging the sphere till it has the same charge as the ion, the
Born model has yielded the free-energy change resulting from the transfer
of ions from a vacuum to solvent.

What is the importance of this free-energy change? The importance
derives from the fact that systems in nature try to attain a state of minimum
free energy. Thus, if the 4G;_g is negative, then ions exist more stably
in the solvent than in vacuum. Since the diclectric constant of any medium
is greater than unity, 1 > 1/e,, and, therefore, AG;_g is always negative;
hence, the Born equation (2.17) shows that all ions would rather be involved
in ion-solvent interactions than be left in vacuum. The Born equation
predicts that the smaller the ion (smaller r;) and the larger the dielectric
constant ¢,, the greater will be the magnitude of the free-energy change
in the negative direction (Fig. 2.12).

If one stands back and looks at the situation with regard to ions and
their existence in solvents before and after the theory of Born (1920),
several points emerge. One set out to discover the interactions of ions with
a solvent, and one ended up doing a problem in electrostatics. This illustrates
a feature of electrochemistry—it often involves the application of electro-
statics to chemistry. The basis of this link is of course that electrochemistry
is involved with ions and charged interfaces, and these can be most simply
represented in models by charged spheres and charged plates, the stuff
with which electrostatics deals.

One has also seen in the Born theory of ion-solvent interactions an
example of very simple thinking based on models. A complicated situation
has been reduced to a simple one by the choice of a simple model. In the
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case of ion—solvent interactions, once the analogies between an ion and a
charged sphere and between a structured solved and a dielectric continuum
are stressed, the rest is easy.

It will be shown later that, not unexpectedly, the Born model over-
simplifies the problem, but one must see the model in its historical perspec-
tive. It was proposed at a time when the very existence of charged particles
in solution was questioned. Indeed, the Born approach to ion-solvent
interactions and the fact that it gave answers of the same order of magnitude
as experiment (¢f. Section 2.2.9) helped to confirm the hypothesis that
ions exist in solution. Seen in historical perspective, the simple Born model
may be recognized as an important step forward.

2.2.6. The Enthalpy and Entropy of lon-Solvent Interactions

Before finding out about the experimental testing of the Born theory,
it is preferable to recover from the theoretical expression for the free energy
AG;_g, the enthalpy (heat) and entropy changes associated with ion-
solvent interactions. This 1s because it is the heat of ion-solvent interac-
tions, rather than the free energy, which is obtained directly from the ex-
perimentally measured heat changes observed to occur when solids con-
taining ions are dissolved in a solvent, i.e., when ion-solvent interactions
are provoked.

By making use of the combined first and second laws (dE = T dS
—pdV)inG=H— TS = E + PV — TS, one gets

dG = VdP — SdT (2.18)

and, at constant pressure,

(_g_g_)P __§ (2.19)

Thus, applying (2.19) to a transformation from state 1 to state 2
results in

9G,\  (0G\ _ .
("“"ar )P ("‘"‘a 2 )P — (S~ Sy (2.19)
Hence
9AG
= — 48 (2.19b)

since AG =G, — G, and AS = S, — ;.
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Hence, all one has to do to get the entropy changes associated with
ion-solvent interactions is to differentiate AG;_g [given by Eq. (2.17)]
with respect to temperature. During this differentiation, the question arises
whether the dielectric constant should be treated as a constant or as a
variable with temperature. At this stage of the presentation, one does not
have a feel for dielectric constants to be able to answer the question (see,
however, Section 2.5); so one has to appeal to experiment. It turns out
that the dielectric constant does vary with temperature (Table 2.2) and
must therefore be treated as a variable in differentiating Eq. (2.17) with
respect to temperature.

Thus, the entropy change due to ion-solvent interactions is

. 0 AGI—S . NA (Zieo)z 1 883
AS1-s = ( oT )P o 2r et OT (2.20)
and from
AHI—S - AGI—S + TASI—S (221)
one has for the heat change:
_ NAZizegz . 1 . T 883
AH; ¢ = o 1 y eZ T (2.22)

Now that one has a theoretical expression for a heat change, it is time
to think of comparing the predictions of the Born theory with experiment.
There are, however, a few conceptual questions first to be considered.

TABLE 2.2

Variation of Dielectric Constant of Water with Temperature

Tempoeéature, Dielectric constant &y Temp:glture, Dielectric constant &y
0 87.74 50 69.91
10 83.83 60 66.81
20 80.10 70 63.85
25 78.30 80 61.02
30 76.54 90 58.31

40 73.15 100 55.72
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the resumption of the normal bulk structure, cannot be sharply defined;
the bulk properties and structure are asymptotically approached.

These structural changes in the primary and secondary regions are
generally referred to as solvation (or as hydration when water is the solvent).
Since they result from interactions between the ion and the surrounding
solvent, one often uses the terms solvation and ion-solvent interactions
synonymously; the former is the structural result of the latter.

2.3.3. The lon-Dipole Model of lon-Solvent Interactions

The above description of the solvent surrounding an ion can now be
used as the basis of a structural treatment of ion-solvent interactions,
initiated by Bernal and Fowler (1933).

Consider an isolated ion in the gas phase above the solvent. The total
work done to transfer this ion from a very dilute gas of ions to the inside
of the solvent defines the free energy of solvation (c¢f. Section 2.2.1), i.e.,
the free-energy change arising from ion-solvent interactions, AG;_g. This
free-energy change is composed of both enthalpy changes and entropy
changes. The latter arise from changes in the degrees of freedom (transla-
tional, rotational, and vibrational) experienced by the water molecules
as they come out of the water structure and associate with an ion. In this
simplified treatment, only the enthalpy changes will be treated.

Ion Solvent molecule not
molecules solvation sheath
\
\

b

Form primary

solvent sheath

Remove (72 + 1) solvent Condensation

molecules from sphericol Transfer primary solvate
volume ion into spherical cavity

+——Solvent

(a) (5)
Fig. 2.29. A thought experiment to separate out various aspects of ion-solvent
interactions.
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Fig. 2.30. The formation of a cavity in the solvent by the removal of
n + 1 solvent molecules.

The ion-solvent interactions consist of several contributions. There is,
for example, the interaction between the ion and the » nearest neighbors
which surround the ion and make up the primary solvent sheath (see Fig.
2.28). Then, there is the energy used up for the structure breaking in the
secondary region (Fig. 2.28), etc.

To separate out the various aspects of the total interaction, one can
consider a thought experiment (Fig. 2.29) proposed by Eley and Evans
in which the proper number of solvent dipoles are taken from the solvent
to the gas phase and there oriented around the ion (by ion—dipole forces).
Finally, the primary solvated ion is transferred into the solvent, upon
which structure breaking, etc., occurs.

The steps of this thought experiment will now be described more
elaborately.

1. One starts the thought experiment with the knowledge gained from
various types of experiment that the primary solvated ion will occupy a
volume corresponding to the volume of » primary solvent molecules plus
one more to make room for the bare ion.' This volume corresponding to

t Note that, as a first approximation, it is assumed that the volume of a water molecule
is the same as that of a bare ion. For some ions, this is a reasonable approximation.
Thus, the radius of a water molecule is 1.38 A and that of K+ is 1.33 A.
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n + 1 solvent molecules must be made available in the solvent for immers-
ing a primary solvated ion. Hence, n + 1 molecules will be removed from
the solvent and taken into the vacuum phase (Fig. 2.30). Thus, the cavity
which is left in the solvent will be large enough to accommodate an ion plus
n molecules in its primary solvation sheath. Let this work of cavity formation
be represented by Wip.

2. Before the n 4+ 1 solvent molecules just removed from the solvent
can orient around the ion in the gas phase, they must be detached from
the cluster of n + 1 molecules and made free to orient around the ion.
To make this feasible, the bonds holding together these » + 1 solvent
dipoles in the cluster are broken asunder (Fig. 2.31), i.e., the group is
dissociated in the gas phase into n + 1 separate molecules. This dissociation
will involve an amount of work represented by W,.

3. Next, ion-dipole bonds are forged between the ion and »n out of
the n + 1 solvent dipoles, and, thus, the primary solvent sheath is formed.
The work of interaction between an ion and a dipole (of moment u,
and radius r,) for the configuration shown in Fig. 2.32 is approximately

Positive ion

\.,

Dipole

Q‘/

Negative ion

Fig. 2.32. The minimum interaction-energy
orientation of a dipoie to an ion.



ION-SOLVENT INTERACTIONS 83

Free solvent
dipole

@ "
@ solvated
ion

Fig. 2.33. Formation of a primary solvated ion.

given by (¢f. Appendix 2.2)*

Z;€olh s

ICENA:

But, it is # solvent molecules that are involved in the primary solvent sheath.
Hence, per mole of ions, the ion-dipole interaction work (Fig. 2.33) is?

N anzieopt,

Wio = =3 5

(2.25)

4. Now, the ion together with its primary solvent sheath is transferred
from vacuum into the cavity in the solvent (Fig. 2.34). What work is in-
volved in this transfer? A simple way to look at it is to imagine that the
solvated ion in the gas phase is discharged and then, still preserving its
solvent sheath, is sneaked into the cavity formed in step 1 of the thought
experiment (cf. Fig. 2.30), whereafter the discharged but still solvated ion
is charged up to its normal value z;e,. What has been described is simply
a Born charging process (cf. Section 2.2.5). There is, however, an important
difference between the Born charging done here and that previously describ-
ed (Fig. 2.35). It is not a bare ion but a primary solvated ion which under-
goes the charging process. Hence, the radius to be used in the Born ex-
pression (2.22) is no longer the crystallographic radius r; but the radius
of a solvated ion, i.e., r; + 2r,.

Since it has been decided to deal only with enthalpies (or heat-content

' Note that the dielectric constant does not appear in this expression because there is
only vacuum between the dipole (i.e., the water molecule) and the (adjacent) ion.

! Note that the ion-dipole work always contributes a negative quantity to the heat of
solvation, independently of the sign of z,, because the dipole always orients so that
that pole is in contact with the ion which makes the interaction attractive.
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Primary solvated ion

Vacuum
Work of transferring
primary solvated ion
¥ from vacuum to cavity
in solvent =Wae
Solvent L

Fig. 2.34. Transfer of a primary solvated
ion from vacuum into a cavity in the solvent.

2z
5

3 +) 7

y Bare ion
Primary
golvuied
ion Vacuum Vacuum

Solvent
v
Solvent

(a) (%)

Fig. 2.35. The difference between the Born charging process in (a)
the ion—dipole model of solvation in which a primary solvated ion of ra-
dius r; + 2r is transferred into the solvent (Section 2.3.3) and in (b)
the nonstructural model of Born (c¢f. Section 2.2.5) in which a bare ion
of radius r; is involved.
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changes), one can set the work of transferring a solvated ion from vacuum
into a cavity in the solvent equal to the Born heat of solvation. This con-
tribution to the total heat of ion-solvent interactions shall be called the
Born charging contribution, Wye. Thus, per mole of ions,

Aggﬁoz(l__l T a%)

 20r; + 2ry) N

Wae = IR el 0T

(2.26)

Is it reasonable to use here an equation based on the Born model
even though one motivation for this structural treatment of solvation is
to get away from the Born nonstructural approach? The justification is
as follows. The radius r; + 2r, has been precisely defined (its ambiguity
was a problem in the Born model), the water outside the cavity is, at this
stage of the thought experiment, normal and undisturbed, and, therefore,
its dielectric constant (another ambiguity of the Born model) should be
that of bulk water. Thus, by considering the process of ion-solvent inter-
actions as occurring in steps with corresponding heat-content changes,
one of the steps, namely, the introduction of a primary solvated ion
into an undisturbed solvent, has been made to resemble a Born charging
process.

5. Once the cavity is filled up with the solvated ion and the Born
charging is carried out, one must ask whether the solvated ion leaves the
surrounding water undisturbed. It does not (Figs. 2.28 and 2.36). The
introduction of the primary solvated ion into the cavity does lead to some

Work of structure breaking
in secondary region o
*,

Primary
solvated
ion

Region of —
"

structure
breaking"

Solvent

Fig. 2.36. The introduction of a primary solvated ion
into the cavity causes disturbance to the structure of the
solvent in the immediate vicinity of the solvated ion.
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Solvent molecule not used

to form primary solvent
sheath

©

Work of condensation = W,

!

Solvent

Fig. 2.37. The condensation of a water
molecule left behind in vacuum because it
was not used to form the primary solvent
sheath.

disturbance of the structure of the surrounding solvent. In fact, this is the
structure breaking that has been referred to in dealing with the secondary
region, between the primary solvent sheath and the bulk water far away
from the ion (Fig. 2.28). Let this work of structure breaking be repre-
sented by Wgg.

6. One must check up on the cycle now. Have all the solvent molecules
(taken out of the solvent into vacuum to create the cavity) been returned
to the solvent? Of the n + 1 solvent molecules removed, only » have return-
ed in the company of the ion as members of its solvation sheath. The one
water molecule which did not become part of the solvation sheath of the
ion and which has been left behind in vacuum, has to be returned to the
solvent to complete the cycle (Fig. 2.37). The work involved in this process
is equal to the work of condensation, W .

Now, all the solvent molecules which were removed from the solvent
in the thought experiment have returned to the solvent. In addition, the
ion which was in vacuum at the beginning of the thought experiment has
been transferred into the solvent. Hence, any work resulting from plunging
the ion into the solvent must result purely from ion-solvent interactions.
This work (or heat)! of solvation or ion-solvent interactions is therefore

t Note that, as already stated, there is an approximation being made here: It is the
free-energy change which is exactly equal to the work done (Appendix 2.1). One has
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Solvent

Fig. 2.38. How the total heat AH,_g of ion—solvent interactions
has been separated in a thought experiment into the various steps
of cavity formation Wgg, cluster dissociation Wp, formation of
primary solvated ion W,_p, Born charging Wpgc, structure break-
ing Wsg, and condensation, W.

given by (Fig. 2.38) the sum of all the pieces of work performed in each
step, 1.e.,

AHp g = Wep + Wp+ Wi_p+ Wye + Wp + We (2.27)

= W+ WI—D + WBC (228)

where
W — WCF + WD J{‘ WSB *Jr' WC (229)

neglected T AS, where AS is the change of entropy during the solvation process. Struc-
tural theories of the entropy of hydration are known but will not be discussed here.
The error introduced by the approximation is about 10%;.
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Hence,

. ) 2
AH[__S — W _ NAan,eOM.s __ NA(Zteo) (1 . 1 T 688

ek rF 2G. 1 2y P aT) (2.30)

where the Avogadro number has been introduced to get the heat of solva-
tion per mole of ions.

2.3.4. Evaluation of the Terms in the lon-Dipole Approach to
the Heat of Solvation

The Born term, 1.e., the last term in Eq. (2.30), can be easily calculated.
One uses the crystallographic radius r; of the ion, the radius r, of the solvent
molecules, and the bulk dielectric constant ¢, of the solvent. The ion-
dipole term, i.e., the second term in the expression (2.30) for the heat of
solvation, can also be calculated without difficulty provided one knows—or
estimates —the number »n of solvent molecules which coordinate (or are
nearest neighbors to) the ion.

The first term in Eq. (2.30), however, is more awkward. It will be
recalled [Eq. (2.29)] that it consists of Wy, the work of forming a cavity
in the solvent by the removal into the gas phase of a cluster of » 4 1 solvent
molecules; W, the work of splitting up the cluster and separating to in-
finity the n 4+ 1 solvent molecules; Wsp, the work of altering the orientation
of the solvent molecules in the solvent around the primary solvated ions;
and W, the work of condensing the one solvent molecule (from the cluster)
which is not used in the solvation of the ion.

The work W, of breaking the cluster and separating the n 4 1 solvent
molecules can be considered either as the work of separating dipoles, i.e.,
the work arising from dipole-dipole forces or, in the case of hydrogen-
bonded liquids such as water, the work of breaking hydrogen bonds (Fig.
2.39). Since about 5 kcal mole! is required to break hydrogen bonds, the
value of W depends on the value of # in the cluster of n + 1 solvent mole-

Fig. 2.39. Four hydrogen bonds (which
are numbered) must be broken to separate
the cluster of 4 + 1 = 5§ water molecules.
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cules which are removed from the solvent to make room for an ion and its
n nearest neighbors. If, for example, an ion surrounds itself with four water
molecules in a tetrahedral configuration, then the cluster consists of
4 4+ 1 = 5 water molecules, and four hydrogen bonds must be broken per
cluster to separate the water molecules. Since 1 mole of cluster must be
removed from the solvent for the solvation of 1 mole of ions, it is necessary
to break 4 moles of hydrogen bonds per mole of ions. This requires
4 X 5 = 20 kcal mole-1.

The work W, of condensing one solvent molecule per ion, or 1 mole
of solvent molecules per mole of ions, can be taken from the experimental
latent heat of condensation (Fig. 2.40); it is about —10 kcal mole—.

The cavity formation work Wy and the structure-breaking work Wgp
can be only roughly calculated. When the » -+ 1 water molecules are remov-
ed to form the cavity, a certain number of hydrogen bonds linking these
molecules to those outside the cavity are broken (Fig. 2.41). When the
primary solvated ion is introduced into the cavity, some of the solvent
molecules surrounding the solvated ion have to reorient. This reorientation
leads to the breakage of some hydrogen bonds and the formation of others.
Thus, if one considers the combined steps of cavity formation and structure
breaking, a certain net number of hydrogen bonds will be broken. Once
this number is known, one can easily get Wep + Wsp by multiplying the
net number of hydrogen bonds broken by 5 kcal mole™.

A simple way of getting this number is to look at the water structure
before and after the solvated ion is introduced into the cavity. A careful
study of Fig. 2.42 shows that, whereas 12 hydrogen bonds are broken in
the cavity formation step involving the removal of 4 4+ 1 = § water mole-

)

Work of returninga _ Latent heat of condensation
solvent molecule ~ per molecule

'

Solvent

Fig. 2.40. The work of condensing a water molecule is
equal to the latent heat of condensation per molecule.
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Tetrahedral
cluster

Fig. 2.41. A total of 12 hydrogen bonds are broken when a tetrahedral clus-
ter of water molecules is removed from the solvent to form the cavity (num-
bers represent broken hydrogen bonds).

(b)

(a)

Two hydrogen bonds
not remode

Fig. 2.42. Schematic diagram to show that, out of four coordinating water mol-
ecules [I, II, lll, and IV in (a)] in a tetrahedral cluster removed from the cavity, two
water molecules [l and [l in (b)] reorient in the formation of a primary solvated positive
ion, and, therefore, only 10 H bonds [see (a)] are remade when the solvated positive
ion is introduced into the cavity.
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cules, only 10 hydrogen bonds are remade when the primary solvated
positive ion is introduced into the cavity. That is, a net number of 2 hy-
drogen bonds are broken per ion in the combined process of cavity formation
and structure breaking. The corresponding heat change Wgr 4+ Wsp is
2 X 5 = 10 kcal mole! of ions.

It is now possible to write down for a tetrahedrally coordinated positive
ion an approximate value for the work term [¢f. Eq. (2.29)] W = W,
+ Wo + Wer + Wsg. Using the arguments just presented, i.e., W, = 20
kcal mole=!, W, = —10 kcal mole~}, and Wy + Wgg = 10 kcal mole?,
one has for four-coordinated positive ions

W=Wp+ We+ Wer + Wsp
=20 — 10+ 10
= 20 kcal mole! (2.31)

Now consider negative ions. If, once again, tetrahedral coordination
is considered, then W, continues to be the work required to break up a
cluster of five water molecules, i.e., it is 20 kcal mole'. The latent heat of
condensation of a water molecule obviously remains the same (—10 kcal
mole~1) for positive and negative ions. But a perusal of Fig. 2.43 shows
that the negative ion differs from the positive ion in that more water mole-
cules have to reorient when the primary solvated ion is introduced into the
cavity. In other words, the orientation of water molecules around a primary
solvated ion is less compatible with the water molecules in the primary
solvation shell of negative ions than with those of positive ions. Thus,
of the 12 hydrogen bonds broken in forming the cavity, only 8 are remade
when the cavity is filled up with a solvated ion (see Fig. 2.43). That is, the
net number of hydrogen bonds broken in the combined process of cavity
formation and structure breaking is four in the case of tetrahedrally
coordinated negative ions; and the corresponding work Wgp + Wgp is
4 x 5 = 20 kcal mole~!. Consequently, the work W [c¢f. Eq. (2.29)] for
four coordinated negative ions is given by

W=Wp+ We+ Wer + Wsp
=20—10+ 20
= 30 kcal mole! (2.32)

Now that the work W has been evaluated, it can be introduced into
Eq. (2.30) for the heat of hydration. Thus, for four coordination, one has
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Cluster with its broken H-bonds Solvated negative ion
(a) ()

Four hydrogen bonds
not remade

N
(€) Solvated negative ion

Fig. 2.43. Schematic diagram similar to Fig. 2.42 except that a negative ion is
being considered here. Thus, two water molecules [llIl and IV in Fig. 2.42 (b)] re-
orient in the formation of a primary solvated negative ion; and, therefore, only 8 H
bonds [1 to 7 and 10 in Fig. 2.42 (c)] out of 12 H bonds [see Fig. 2.42 (a)] are remade
when the solvated ion is introduced into the cavity.

AH[_S == 20
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for negative ions.

By analyzing the structure breaking for octahedral (n = 6) coordin-
ation, one can develop expressions for the heat of solvation of ions with
six solvent molecules in their primary solvent shells. In this case, the ex-
pression is

. y 2
6NAZ1'€0/ACW . NA(zzeO) (1 - 1 r aeW ) (2.35)

AH; g =15 — (ri + ) 2(r; + 2ry) -

Ew 8W2 aT
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2.3.5. How Good Is the lon-Dipole Theory of Solvation?

The heats of ion-solvent interactions calculated on the basis of the
ion—dipole approach [Eq. (2.33) and (2.34)] can now be compared with
the experimental values used to test the Born theory. The comparison is
therefore made with values obtained by equally dividing the experimental
heat of solvation of the salt KF between K+ and F~ ions and then using
the individual values thus gained in data for the experimental hydration
heats of other salts (c¢f. Section 2.2.7).

The comparison (Table 2.12) shows that the ion-dipole model is a
considerable improvement over the rudimentary Born continuum model.
The improvement indicates that the ion—dipole model is on the right track
in considering that an ion sees the solvent in contact with it as consisting
of discrete water dipoles which orient around it. It is only the solvent lying
farther out which the ion views Born-wise as a dielectric continuum. Thus,
by assuming that the solvent has the bulk dielectric constant right up to
the surface of the ion, the Born model missed the work of orientation of
water dipoles around the ion and the related change of dielectric constant
of water near the ion.?

When one considers numerically the various contributions to the heats
of ion-solvent interactions calculated from Egs. (2.33) and (2.34), it can
be seen (Table 2.13) that the main contributions come from the ion-dipole
and Born charging terms, i.e.,

. N ynzequy
(r; + rp)?
and

_ Nu(ziep) (1 1 T (?eW)
2(r; + 2ry) ew eyt OT

respectively. This fact must be taken to mean that ion-solvent interactions
are essentially electrostatic in origin. The ion behaves like a charged sphere
to the water outside the primary solvent sheath and like an orienting
attracting charge to the water molecules inside the primary solvent shell.

The approximately 4 10%, agreement between the calculated and ex-
perimental values for the heats of solvation of ions should normally be
cause for jubilation, but the situation here is abnormal. The so-called ex-
perimental values have been obtained by splitting the unambiguous experi-

 The connection between the orientation of water dipoles around ions and the dielectric
constant of the medium will be looked into much further in Section 2.5.
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equal magnitude g—a charge of +¢ near each hydrogen atom, and two
charges each of value —g near the oxygen atom. Thus, rather than consider
that the water molecule can be represented by a dipole (an assembly of
two charges), a better approximation, suggested by Buckingham (1957),
is to view it as a quadrupole, i.e., an assembly of four charges. What may
this increase in realism of model do to the remaining discrepancies in the
theory of ion-solvent interactions?

2.3.9. The lon—-Quadrupole Model of lon-Solvent Interactions

It will be recalled that the structural calculation of the heat of ion-
solvent interactions (c¢f. Sections 2.3.3 and 2.3.4) involved the following
cycle of hypothetical steps: (1) A cluster of n 4 1 water molecules is
removed from the solvent to form a cavity; (2) the cluster is dissociated
into n -+ 1 independent water molecules; (3) # out of n 4+ 1 water molecules
are associated with an ion in the gas phase through the agency of ion-dipole
forces; (4) the primary solvated ion thus formed in the gas phase is plunged
into the cavity; (5) the introduction of the primary solvated ion into the
cavity leads to some structure breaking in the solvent outside the cavity;
and (6), finally, the water molecule left behind in the gas phase is condensed
into the solvent. The heat changes involved in these six steps are Wgp,
Wo, Wi_p, Wye, Wsg, and Wy, respectively, where, for n = 4.

W= W + Wp+ Wsg + We = +20 for positive ions
= +30 for negative ions (2.29)

4N yzepuy
W, ,=— ——-— 2 2.25
=0 (r; + rw)? ( )
L NA(ZieO)?‘ . 1 . T asW )
WBC - 2(ri + 2";17) (1 EW €W2 0T (2.26)
and the total heat of ion-water interactions is
AHr w0 =W+ Wi p+ Wae (2.28)

If one scrutinizes the various steps of the cycle, it will be realized that
only for one step, namely, step 3, does the heat content change [Eq. (2.25)]
depend upon whether one views the water molecule as an electrical dipole
or quadrupole. Hence, the expressions for the heat changes for all steps
except step 3 can be carried over as such into the theoretical heat of ion-
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Fig. 2.46. Improvement in the calculation
of the ion—water molecule interactions by
altering the model of the water molecule
from a dipole to a quadrupole.

water interactions, AH_y o, derived earlier. In step 3, one has to replace
the heat of ion-dipole interactions, W;_; [Eq. (2.25)] with the heat of

ion—quadrupole interactions (Fig. 2.46).

But what is the expression for the energy of interaction between an ion
of charge z;e, and a quadrupole? The derivation of a general expression
requires sophisticated mathematical techniques, but, when the water mole-
cule assumes a symmetrical orientation (Fig. 2.47) to the ion, the ion-
quadrupole interaction energy can easily be shown to be (Appendix 2.3)

Zi€ollw Z;€oPw
E == — 10
I-Q 2 + 28
z; @ z; e
E,p=- Ji o/‘w+ T %P
Ion Quadrupole
F o liCotw_ Zi&By
l"o- 1'2 2:3
r

Fig. 2.47. The symmetrical orientation of a quadrupole to an ion.

(2.49)
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where the + in the 4 is for positive ions, and the — is for negative ions,
and the py is the quadrupole moment (3.9 X 10-% esu) of the water mole-
cule. It is at once clear that a difference will arise for the energy of interac-
tion of positive and negative ions with a water molecule, a result hardly
forseeable from the rudimentary Born viewpoint and hence probably ac-
countable for the result of Fig. 2.44.

The first term in this expression [Eq. (2.49)] is the dipole term, and
the second term is the quadrupole term. It is obvious that, with increasing
distance r between ion and water molecule, the quadrupole term becomes
less significant. Or, in other words, the greater the value of r, the more
reasonable it is to represent the water molecule as a dipole. But, as the
ion comes closer to the water molecule, the quadrupole term becomes
significant, i.e., the error involved in retaining the approximate dipole
model becomes more significant.

When the ion is in contact with the water molecule, as is the case in
the primary solvation sheath, the expression (2.49) for the ion-quadrupole
interaction energy becomes

. ZioUw Zi€oPw
Fr-o= (ri + rw)? (rs + rw) (2.30)

The quantity E;_, represents the energy of interaction between one
water molecule and one ion. If, however, four water molecules surround
one ion and one considers a mole of ions, the heat change W;_g, involved
in the formation of a primary solvated ion through the agency of ion-
quadrupole forces is given by

4N 4z,eottpy 4N yz:e,Pw

Wi-q = 4Naki-q =~ (r; + rw)? 2(r; + rw)?

2.51)

where, as before, the 4 in the 4 refers to positive ions and the — to neg-
ative ions.

Substituting this expression for W;_, in place of W;_p in expression
(2.28) for the heat of ion-water interactions, one has

_ 4N ziequy ANyzieopw  Nu(zieo)
(ri + rw)? 2(r; + ry)? 2(r; + 2ry)

AHI"Hzo == 20
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for positive ions and
_ Nyzieowy 4N zieopy _ Ny(zieo)?
(ri + rw)? 2(r; + gy 2(r; + 2ry)

1 T aEW
x(l — aT) (2.53)

AHI-Hgo == 30

for negative ions.

2.3.10. lon-Induced-Dipole Interactions in the Primary Solva-
tion Sheath

If one compares Eqs. (2.52) and (2.53) with Eqgs. (2.33) and (2.34),
it is clear that the ion-quadrupole calculation of AH;_y ¢ differs from the
ion-dipole calculation of the same quantity in only one respect: In repre-
senting the water molecule by a quadrupole, one is making a more refined
assessment of the interactions between the ion and the water molecules
of the primary solvation sheath. At this level of sophistication, one
wonders whether there are other subtle interactions which one ought to
consider.

For instance, when the water molecule is in contact with the ion, the
field of the latter tends to distort the charge distribution in the water mole-
cule. Thus, if the ion is positive, the negative charge in the water molecule
tends to come closer to the ion and the positive charge to move away. This
implies that the ion tends to induce an extra dipole moment in the water
molecule over and above its permanent dipole moment. For small fields,
one can assume that the induced dipole moment y;,q is proportional to
the inducing field X

Ming = 00X (2.54)

where a, the proportionality constant, is known as the deformation polariz-
ability and is a measure of the “distortability” of the water molecule along
its permanent dipole axis.

Thus, one must consider the contribution to the heat of formation
of the primary solvated ion, i.e., step 3 of the cycle used in the theoretical
calculation presented above, arising from interactions between the ion and
the dipoles induced in the water molecules of the primary solvent sheath.
The interaction energy between a dipole and an infinitesimal charge dg is
—u dgfr?, or, since dg/r? is the field dX due to this charge, the interaction
energy can be expressed as —u dX. Thus, the interaction energy between
the dipole and an ion of charge z;e,, exerting a field z;e,/r* can be found
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2.4. THE SOLVATION NUMBER

2.4.1. How Many Water Molecules Are Involved in the Solva-

tion of an lon?

Mathematically speaking, the electric force originating from an ion

becomes zero only at infinity. In effect, however, the force fades out to a
negligible value after quite a short distance (of the order of tens of ang-
stroms). Beyond this cutoff distance, solvent molecules may be regarded as
unaware of an ion’s presence. There is therefore a certain effective volume
around the ion within which its influence operates. How many solvent
molecules are inside this volume and could therefore be said to be partici-
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TABLE 2.17

Hydration Number Ascribed to the Sodium lon in According to Different
Experimental Methods

Ion Hydration numbers reported

Na* 1, 2, 2.5, 4.5, 6-7, 16.9, 44.5, 71

pants in the solvation of the ion? This number may be termed the solvation
number® (or hydration number when water is the solvent).

The question of the value of the solvation number is an interesting
one. It is no surprise, therefore, that a large number of different methods
have in the past been used to determine the solvation number (more about
these methods later). But, the alarming thing is that exceedingly discrepant
results are obtained by the various methods. For instance, widely varying
hydration numbers ranging from 1 to 71 (Table 2.17) have been ascribed
to the sodium ion. Are some of the methods wholly incorrect, or is there a
confusion as to what constitutes a hydration number?

The answer can be approached, if not attained precisely, by the
following considerations. What value of hydration number a particular
method gives depends on what types of ion—solvent interactions the method
senses. If it can pick up the interactions of an ion with water molecules
several molecular diameters away in the secondary region, it will report
that a large number of water molecules are involved in solvation, i.e., a
high hydration number. If, however, the method only detects how many
water molecules an ion takes along in the course of its thermal motions
through the solution (i.e., those tightly bound to it), then it will report a
small hydration number.

To avoid ambiguity, it is best to define a primary solvation number as
the number of solvent molecules which surrender their own translational
freedom and remain with the ion when it moves relative to the surrounding
solvent. Of course, a solvent molecule loses its independent translational
motions only when it is overwhelmed by the ionic force field into adopting

t This total effective number of solvent molecules involved in interactions should not
be confused with the number n used in the structural treatment of the energetics of
solvation. The latter number was meant to represent the number of solvent molecules
in contact with the ion and assumed to be aligned in its field.
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TABLE 2.18

Hydration Numbers

Number of independent methods

Ton Hydration number on which result is based
Lit 541 5
Na+ 5+1 5
K+ 4 42 4
Rb+ 3+1 4
F- 4+1 3
Cl- 1£1 3
Br- 1+ 1 3
- 1+1 2

a minimum-energy orientation to the ion. Thus, the primary solvation
number can also be defined as the number of solvent molecules which are
aligned in the force field of the ion.

This definition provides a criterion for discussing the different methods
of determining solvation numbers. The primary solvation number should
be determined by only those methods which register the number of water
molecules which are associated with the ion in its travels through the
solution.

When, however, these methods are used (and they will be presented
in Section 2.4.5), it turns out (Table 2.18) that the number of water mole-
cules determined by some of them are /ess than what geometry says the
number of water molecules in contact with the ion should be. This latter
number is a coordination number,’ i.e., the number of nearest-neighbor
water molecules which are in contact with or coordinate or surround an ion.
The question, therefore, arises: Why does not all the coordinated water join
the 1on in its zig-zag motions through the solution? In fact, why is the
solvation number not always equal to the coordination number? Further,

t In the structural treatment of the heats of solvation, it was tacitly assumed that the
number n of primary solvent molecules aligned in the ionic field is equal to the coor-
dination number. In other words, the structural treatment slurs over the distinction
between the number that are oriented in the ionic field (i.e., move with the ion) and
the number in contact with the ion.
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what happens when coordinating solvent molecules desert their positions
in the coordination shell of an ion as soon as it begins its voyage through
the solvent, say, in response to an electric field? Do the missing solvent
molecules leave voids in the coordination shell of a moving ion? The
concept of solvation number will become clear only when such questions
are answered.

2.4.2. Static and Dynamic Pictures of the lon—-Solvent Molecule
Interaction

Suppose that, in a thought experiment, a bare ion is made to stop
during its movements through the solution. At that instant, the hypo-
thetical stationary ion will be surrounded or coordinated by water mole-
cules still associated in a network structure (Fig. 2.57). What will happen?
The ionic force field will operate on the neighboring water dipoles. The
forces, which are essentially ion—dipole in nature, will cause some of the
water molecules to break away from the water network and attach them-
selves to the ion.

What is the consideration on the basis of which a particular water
molecule decides to embrace the ion by aligning into its field or to shun
it and remain in the water network? The consideration is simple: Is the
ion—dipole interaction energy greater in magnitude than the hydrogen-bond
energy keeping the particular water molecule in the network? If the ion-
dipole energy is greater in magnitude, the water molecule should link itself
with the ion and form part of the primary solvation sheath. If not, the
water molecule should remain in the water network.

The whole thought experiment described above is a static one. All
that has been done is to consider the energies in the initial state (a water

Coordination

- 7 water

Fig. 2.57. A hypothetical stationary ion coor-
dinated by water molecules still associated into
a network structure.
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Fig. 2.58. Schematic diagram to show
that, of four water molecules which coor-
dinate an ion, two water molecules, 4 and
B must reorient from positions in which one
of their H atoms faces the ion to positions
in which the same H atoms are away from
the ion. (The required reorientation is shown
by an arrow.)

molecule in the water network and an ion nearby) and in the final state
(water bound to the ion by ion-dipole forces).

But ions can be kept stationary only in thought experiments. In reality,
they exist in a state of ceaseless motion (see Chapter 4). So time and move-
ment must come into the picture of ions interacting with water molecules.
One must abandon a static view for a dynamic view.

One can develop a dynamic view along the following lines (Samoilov).
Consider a water molecule bound by hydrogen bonds to the water network.
Suppose that, at a time taken as zero (f = 0), an ion suddenly appears next
to the water molecule. If the net force on the water molecule is in favor of
its association with the ion rather than with the water network, it will try
to get into an equilibrium position around the ion, i.e., the water molecule
will try to align into a minimum-energy orientation. This usually means
that the water molecule has to reorient (or jump through a small distance
or both) from the position it had in the water structure to the new positipn
of alignment in the ionic field (Fig. 2.58).

But these reorienting or jumping movements to be made by the water
molecule will require a finite time, the value of which depends on the critical
activation energy required for the reorientation or jumping process. Let
this time required for the orientation of a water molecule into the coordin-
ation sheath around an ion be Tyuior orient (Fig. 2.59). This orientation time
will not have a unique value because it will depend on how far the ion is
situated from and on how the ion is located with respect to the water



122 CHAPTER 2

_ Final position

‘}? __—Initial position

ke
r’-l
)

Fig. 2.59. The time required for a water
molecule in contact with an ion to reorient
from an initial to a final position (shown in
figure) is 7orient-

network holding the water molecule. So one is talking about an average
water-orientation time.

Now, instead of considering the ion suddenly placed next to the water
molecule at = 0, one can visualize the ion resting or waiting near the
water molecule in between its hops from location to location in the solvent
(cf. Section 4.2). Of course, if a water molecule belonging to the water
network is to orient toward the ion, it must do so when the ion is within
a certain small distance of the water molecule. But how long does the ion
stay within this jumping range? That depends on how long the ion pauses
next to the water molecule in the course of its jumps through the solvent.
The longer the ion waits near the water molecule, the longer is the time
available for the water molecule to break out of the water lattice and swing
into that intimate ion-dipole relationship with the ion which characterizes

o

Fig. 2.60. In the course of its hops through
the solution, the hopping ion can be con-
sidered to spend a time Tjon wait IN contact
with the neighboring water molecules. Will
one of these orient itself into a position of
minimum interaction energy with the ion
befcre the latter has jumped to a new po-
sition?
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a seat in the primary hydration sheath. The hopping ion spends a certain
time in ‘“contact” with the particular water molecule under discussion.
Call this contact time 7;,, wait (Fig. 2.60).

2.4.3. The Meaning of Hydration Numbers

Now, an interesting qualitative conclusion becomes clear. If the time
an ion waits near a water molecule is long compared with the average time
a water molecule takes to orient into association with an ion, then the
probability of the water molecule’s being captured by the ion is high. That
is, the probability of an ion’s capturing a water molecule depends on the
ratio Tion wait /Twater orient

If Tion wait/Twater orient 1S large, then the ion will be surrounded by the
full geometrically permitted complement of bonded water molecules during
all its zig-zag motions through the solution. Under these circumstances,
the hydration number (i.e., the number of water molecules which participate
in the translational motions of the ion) will be equal to the coordination
number.

If, however, Ti,n wait /Twater orient 15 Of the order of unity, then the
situation is interesting. The time an ion spends in the neighborhood of a
water molecule is of the order of the water reorientation time, and, hence,
though the ion is not sure to capture a water molecule, there is a certain
probability, less than unity. At the same time, one must consider the opposite
process: An ion with a bound water molecule collides with a water molecule
belonging to the water network. There will be a certain probability that the
ion will lose its water to the water network. But there are plenty of water
molecules all around and the ion has a chance of making up its loss. Thus,
over a period of time which is long compared with the period of contact
between a moving ion and a specific water molecule, the ion has aligned
and trapped in its field a certain number of water molecules which is less
than the number of water molecules which geometrical close packing makes
possible, i.e., the coordination number.

The collisions between ions and water molecules linked to the water
network are analogous to any other collision process. Consider, for example,
the collisions between neutrons and U?® nuclei, in which slow neutrons
stand a better chance of being captured than fast neutrons. One says that
there is a large capture cross section for slow neutrons. It is as if a slow
moving neutron sees a bigger target than a fast moving one.

What happens if the ions wait for so short a time that, even before a
water molecule has had time to break out of the water structure and turn
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around, the ion has hopped away? Then, the probability of a water mole-
cule’s being captured by the ion is zero, and, on a time average, the ion
will not have any aligned water molecules in contact with it, i.e., its primary
hydration sheath is empty. This does not mean that such ions are not
surrounded by interacting solvent molecules or that they would have no
coordination water. It only means that, because iy, wait/Twater orient << 1s
the ion does not wait long enough at any particular site for the contiguous
water molecules to swing out of the water network into minimum-energy
orientation with the ion. Even if the ion does capture a water molecule,
it is bound to lose it soon. It also means that the moving ion exchanges
water molecules so easily with the surrounding solvent that, in effect,
the moving ion does not carry its sheath along with it. Its solvation number
is zero, though its coordination number is that dictated by geometry.

The picture of solvation numbers presented here is a dynamic one.
The solvation number refers to the number of water molecules which remain
aligned with the ion during its jumps through the medium. But it is not
necessary that the same individual water molecules serve in the solvation
sheath for an indefinitely long time. A given water molecule may serve the
ion for some time, but it is not imprisoned for life in its hydration shell.
A chance collision, and the particular water molecule may link up again
with the water network, get left behind by the hopping ion, and watch
another water molecule yield to the attraction of the ionic field and be
incorporated in the primary solvation sheath.

2.4.4. Why Is the Concept of Solvation Numbers Useful?

In all this dynamic exchange of solvent molecules between the coor-
dination region and the main bulk of solvent, has the concept of solvation
number any utility? Yes, the solvation number can be considered the
effective number of solvent molecules to be “permanently’”’ bound to the
ion and to follow its motion from site to site. The kinetic entity is not the
bare ion but the ion plus the solvation number of water molecules.

The concept of solvation number permits one to suppress the dynamic
nature of the primary solvation sheath from many modelistic considerations
of ions in solution. This is important particularly in situations where one
would overcomplicate an analysis by considering the details of the constant
exchange of water molecules between the ionic primary hydration shell
and the solvent. The overall total action of the ion on the water may be
replaced conceptually by a strong binding between the ion and some effective
number (the solvation number) of solvent molecules; this effective number
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may well be almost zero in the case of large ions, e.g., iodide, cesium, and
tetraalkylammonium. The solvation number clearly diminishes with increase
of ionic radius because, with increasing ionic radius, the distance to the
coordinating water molecules increases and, thus, the ionic force field which
aligns the ion diminishes so that the water molecules have less inclination
to reorient away from their solvent-structure positions.

Of course, there may be situations where, quite independent of the
ratio Tion wait /Twater orient» there are thermodynamic restrictions against the
association of solvent molecules with the ion, e.g., the ion-solvent molecule
interaction energy may be less in magnitude than the solvent molecule-
solvent molecule energy. In such cases, the solvation number will be zero
on static considerations alone.

2.4.5. On the Determination of Solvation Numbers

All this discussion would be pointless if there were no agreement be-
tween the different methods of measuring primary solvation numbers.
Fortunately, it turns out that there is some degree of agreement between
the values reported by different methods so long as they are methods
which determine the primary solvation number (Section 2.4.1), as opposed
to the vague and asymptotic concept -of total solvation number (see Table
2.19).

TABLE 2.19
Comparison between the Hydration Numbers Determined by Different
Methods
Ion Compressibility Mobility Entropy Theoretical calc.
Lit+ 5-6 6 5 6
Na+ 6-7 2-4 4 5
Mgt 16 14 13
Catt — 7.5-10.5 10
Znt++ —_ 10 -12.5 12
Cd++ — 10 -125 11
Fet+ — 10 -12.5 12
Cut+ — 10.5-12.5 12
Pb++ — 4 -175 8
K+ 6-7 — 3 3
F- 2 — 5 5
Cl- 0.1 0.9 3 3
Br- 0 0.6 2 2
I- 0 0.2 1 0
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A detailed discussion of the various methods of determining solvation
numbers is not intended in this treatment. Nevertheless, it is illustrative
to present two examples.

Consider, for example, the compressibility method. The compressibility
f is defined by the expression

)

If a pure solvent is considered, then its compressibility may be written
thus

1 [aV
Bsotv = — N7 ("5’5")1, (2.63)

Now suppose that an ionic solution is considered. Will its compressibility
be the same as that of the pure solvent, i.e., f,,;v? A physical picture of why
a solvent is compressible will provide a qualitative answer.

Let water be the solvent. It has been described (see Section 2.3) as
having quite an open framework structure with many holes in it. When a
pressure is applied, the water molecules can break out of the tetrahedral
framework and enter the interstitial spaces; the water molecules become
packed more closely (Fig. 2.61). Thus, the volume decreases.

This is not the only way of compressing water. When ions are introduced
into the water, they are capable of wrenching water molecules out of the
water framework so as to envelop themselves with solvent sheaths. Because
the molecules are oriented in the ionic field, the water is more compactly
packed in the primary solvation shell as compared to the packing if the

Fig. 2.61. Schematic diagram to show
that, when an external pressure is applied
to water, water molecules break out of the
networks and occupy interstitial spaces.
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'rd;f&&:::b Compact packing of

___—waler in primary
solvation sheath

"Primary solvated ion

Fig. 2.62. Schematic diagram to illustrate the principle
of electrostriction; owing to the ionic field, water mole-
cules are more compactly packed in the primary solvation
sheath than in the field.

ion were not there (Fig. 2.62). The water has become compressed by the
introduction of the ion. But what is the origin of the influence of the ion?
The origin is the electric field of the ion. Thus, electric fields cause com-
pression of the material medium upon which they exert their influence;
this phenomenon is known as electrostriction.

Since the introduction of ions into a solvent causes the solvent molecules
in the primary solvent shell to be highly compressed, these water molecules
may be supposed not to respond to any further pressure which may be
applied. Thus, the compressibility of an ionic solution is less than that of
the pure solvent because of the incompressibility of the primary solvation
sheath.?

It is easy to calculate the ratio of the compressibility of a solvent S,y
to that of the solution f,,,. Suppose the primary hydration number is
n. Then, n; moles of ions are solvated with n;n, moles of incompressible
water. Now, if n,, moles of water correspond to a total volume V of solution,
n;n, moles of incompressible water would correspond to a volume Vayn,/n,,
of incompressible solution. Defining the symbol y thus

hph;

. (2.64)

y:

t Outside the primary solvent sheath, the water molecules are not oriented to the same
degree as those inside the primary solvation sheath because the orienting ionic field
is less. This means that the nonprimary water molecules are less electrostricted and
free to respond to pressure. One can, to good approximation, say that the water out-
side the primary solvation shell has the same compressibility as the pure solvent.
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the volume of the incompressible part of the solution is y¥. This volume
must be excluded from the expression for the compressibility of the ionic
solution. Thus,

1190
L V} 265
Bon =~ |3 V=1 (2.65)
110
= — [ V] 2.63
b == 4 |55, (2.63)
P _ ¢ _ y (2.66)
ﬂsolv
Hence, from (2.64),
Bsoin nph;
=1 2.67
ﬂsolv My, ( )
Ry /Ssoln )
n, = | — Lo 2.68
g n; ( lgsolv ( )

This equation can be used to obtain the hydration number by deter-
mining the compressibility of the pure solvent and the ionic solution.
There are several methods available for studying compressibilities. The
ultrasonic method, for example, depends on the fact that sound travels
by a compression-rarefaction process, and, thus, the velocity of an ultra-
sonic wave can be used to determine the compressibilities of solvent and
solution, needed for Eq. (2.68) (Fig. 2.63).

The mobility method of measuring hydration numbers is based on the
following argument (c¢f. also Section 4.4.8). Suppose an ion is made to

Ultrasonic wave the

velocity of which
/deaends on compressibility

«——T onic solution

e

R
L1
Ultrasonic source

Fig. 2.63. The ultrasonic method of determin-
ing hydration numbers is based on the fact that
the velocity of the ultrasonic wave depends, by
the compressibility of the solution, on the extent
of primary hydration in the ionic solution.
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drift by the application of an external electric field. The motion of the ion
is opposed by the viscous resistance of the solution. When a steady-state
velocity is reached, the electric force is equal to the hydrodynamic viscous
force (Fig. 2.64). The former is simply z;e,X, where X is the electric field
(or potential gradient) in the solution applied by two electrodes placed in
solution (X is often measured in volts per centimeter). The latter is ex-
pressed by a famous classical formula of hydrodynamics called Stokes’
law. This law, which describes the force experienced by a sphere moving
in a viscous medium, states that

Viscous force = 6mrny (2.69)

where r is the radius of the moving ion and 7 is the viscosity of the medium.
Thus,

Z;e0X = 6mrny (2.70)
or
. Z,ieoX
~ bany
_ Zi€g
= G (2.71)

where u(= v/X), i.e., the velocity under unit electric field, is a measurable
quantity and is often called the electrical mobility of the ion (cf. Section
4.4.3).

Once the radius » of the solvated ion is obtained from Eq. (2.71),

Electric field X

Veiacityf: v Charge=z}- e,

e IV

‘u’|sc0u;$.
| force=67rpv

electric
force =z; 9{3_.51'r

Primary solvated ion

Fig. 2.64. The mobility method of determining hydration numbers is
based on finding out the radius of a primary solvated ion from the fact
that, when an ion in solution attains a steady-state velocity, the electric
force z; e X, is exactly balanced by opposing viscous force 6anrv.
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one can calculate the hydration number n; by a simple geometric argument
(see Fig. 2.65)
%7” 8 — %nr gryst

§or 13120

3 . p3
(I' r%{r(c)ryst) (272)
2
where rqyg Is the crystallographic radius of the ion and ry,o is the radius
of the water molecule, both of which are known from independent data.

Both the compressibility and the mobility methods of determining
primary hydration numbers are based on quite loose approximations. The
compressibility method assumes that the solvent inside the primary solvation
sheath is completely incompressible and the water outside has the same
compressibility as the pure solvent.

It will be recalled, however, that, in the secondary region (see Fig.
2.28 and Section 2.3.2) between the primary solvation sheath and the bulk
water, there is structure breaking and partial alignment of the water mole-
cules. Hence, instead of a sharp change of compressibilities at the boundary
of the primary solvation shell, it is likely that there will be a smooth variation
in compressibility from the ion out into the bulk solvent.

The mobility method, on the other hand, ignores the fact that, because
the secondary region does not have the structure of the bulk solvent, the
viscosity of the medium constituting the immediate neighborhood of the
moving primary solvated ion is not the viscosity of the bulk solvent. It
should be the local viscosity of the region surrounding the primary solvated
ion. Such local viscosities are uncertain in value. Another approximation
in the mobility method is that it neglects electrostrictional compression in
computing the volume occupied by the water molecules in the primary
hydration sheath (and, in the rudimentary version of the theory given
here, also free space between water molecules).

Primary solvation
sheath

Teryst

Fig. 2.65. The calculation of the hydration
number from the radius of the primary solv-
ated ion.
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These approximations in the mobility method are offset by one big
advantage. The method gives directly the hydration number of one ionic
species, e.g., sodium ions, and not the sum of the hydration numbers of
positive and negative ions. In the compressibility method, however, one
only obtains the hydration number of the salt, and thus one has all the
problems of resolving the value for the salt into the individual ionic values
that were encountered in getting individual ionic heats of hydration from
heats of hydration of salts (¢/. Section 2.2.7). One has to depend on some
independent (and sometimes somewhat circular) argument, for instance,
that the relatively large iodide ion should have a hydration number of zero
wholly to the positive ion. Of course, once one is certain of the hydration
number of one ion, one can then get out those of other ions by taking the
appropriate salts.

There are in all about five experimental methods which yield primary
hydration numbers. The results show approximate agreement (41). Each
method involves some doubts and approximations, and, in some cases, it
is difficult to estimate with even a tolerance of 4259, what effect the ap-
proximations would have on the hydration numbers. Nevertheless, when
one recalls the wild spread (cf. Table 2.17) of the values of hydration num-
bers obtained by not distinguishing between methods which determine
primary and total hydration numbers, it must be accepted that the results
of Table 2.20 hang together at least very much better than those in which a
distinction between primary and other types of solvation is neglected. The
results permit one to conclude the basic correctness of the picture of an ion
influencing quite a bit of the surrounding solvent but actually succeeding

TABLE 2.20

Primary Hydration Numbers

Ton Fron.l B Frorr} From apparent Fro'rr'x Most probable
compressibility entropies molal vol mobility integral value

Lit 5-6 5 2.5 3.5-7 5+1

Na* 6-7 4 4.8 24 4+1

K+ 6-7 3 1.0 — 342

F- 2 5 4.3 — 4+1

Cl- 0-1 3 0 — 2+1

Br- 0 2 — — 241

I- 0 1 — — 1+1
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in trapping in its field only a certain number of water molecules which
become the baggage of the ion in its travels through the solution.

There is, however, one surprising thing in the extent of agreement
between the various methods. The mobility method is based on the non-
equilibrium process of conduction, and the compressibility method, for
example, is based on the system’s being in equilibrium. Yet, the two methods
yield fairly concordant results. The point, however, is that, in considering
hydration numbers, one is not concerned with whether the whole system
(the assembly of ions and solvent particles) is in static equilibrium or
dynamic change. One is concerned with the state of the individual ions.
But these are in ceaseless motion irrespective of whether the whole assembly
is in equilibrium or not. Thus, even methods, such as the compressibility
method, which involve measurements of the solution at equilibrium,concern
in fact ions in a very dynamic state and should therefore give nearly the
same hydration and solvation numbers as one would expect when the ions
are drifting under nonequilibrium conditions, e.g., under an electric field.
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2.5. THE DIELECTRIC CONSTANT OF WATER AND IONIC SO-
LUTIONS

2.5.1. An Externally Applied Electric Field Is Opposed by Coun-
terfields Developed within the Medium

The solvation of ions arises from the interactions between solvent
molecules and ions. These interactions result in the orientation of the,
e.g., water molecules toward the ions. It follows that, as the ionic con-
centration increases, the fraction of the water in a solution which is trap-
ped by ionic fields in the solvation sheaths also increases. Is this con-
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Appendix 2.1. Free Energy Change and Work

The free-energy change AG which a system undergoes in a process can be
written quite generally as

AG =AE +p AV + VAp —TAS — §A4T (A2.1.1)
If the process occurs at constant pressure and temperature,
Ap =0 = AT (A2.1.2)
and, therefore,
AG = AE +p AV — T AS (A2.1.3)

If, further, the process is reversible, the heat Q put info the system is related to

the entropy change through
Q=T4S (A2.1.4)

and, from the first law of thermodynamics,

AE=Q — W
=TAS — W (A2.1.5)

where W is the total work done by the system.
Substituting for T A4S from Eq. (A2.1.5) in Eq. (A2.1.3), one has
AG = —(W — p 4V) (A2.1.6)
Since W is the total work (including mechanical work) and p 4V is the mechanical
work of volume expansion,

AG = —(work other than mechanical work done by the system) (A2.17)
or
4G = work other than mechanical work done on the system (A2.1.8)



ION-SOLVENT INTERACTIONS 169

Appendix 2.2. The Interaction between an lon and a Dipole

The problem is to calculate the interaction energy between a dipole and an
ion placed at a distance » from the dipole center, the dipole being oriented at an
angle 0 to the line joining the centers of the ion and dipole (Fig. A2.2.1). (By
convention, the direction of the dipole is taken to be the direction from the
negative end to the positive end of the dipole.)

The ion—-dipole interaction energy U;_p is equal to the charge z,e, of the
ion times the potential y, due to the dipole at the site P of the ion

Ur_p'= 2oy, (A2.2.1)

Thus, the problem reduces to the calculation of the potential v, due to the
dipole. According to the law of superposition of potentials, the potential due to
an assembly of charges is the sum of the potentials due to each charge. Thus,
the potential due to a dipole is the sum of the potentials +¢g/r, and —g/r, due
to the charges +qg and —g which constitute the dipole and are located at distances
r, and r, from the point P. Thus,

q q
Y = —— 57— —
ry | Fg
1 1
—gl — - — (A2.2.2)
ry £

From Fig. A2.2.2, it is obvious that

rt =Y+ (z + d)y (A2.2.3)
and, therefore,

1
=Y G A
1
= [(Y? + 2*) 4 d*® + 2zd] !
= (r® 4 d? + 2zd):

_ % [1 + (;)2+ 2dz ] (A2.2.4)

r2

.

Fig. A2.2.1.



170 CHAPTER 2

Y

[0y

7

s h

de/
2l §

d Fig. A2.2.2.

At this stage, an important approximation is made, namely, that the distance
2d between the charges in the dipole is negligible compared with r. In other
words, the approximation is made that

d\» 2 2d
- (_) TN il (A2.2.5)
r r r

It is clear that the validity of the approximation decreases the closer the ion
comes toward the dipole, i.e., as r decreases.
Making the above approximation, one has [see Eq. (A.2.2.4)]

1 1 ~
e (1 4 2 ) (A2.2.6)

r r r?

which, by the binomial expansion taken to two terms, gives

o1 (1 — 5‘.’5) (A2.2.7)
r r r?
By similar reasoning,
1 1 dz
—_— (1 + — (A2.2.8)
rs r r

By using Eqgs. (A2.2.7) and (A2.2.8), Eq. (A2.2.2) becomes

=242 (A2.1.9)

r r

Since z/r = cos 0 and 2dq is the dipole moment .

it cos 0

p = — (A2.2.10)

r2
or the ion-dipole interaction energy is given by

. 0
Uy p = i€t €087 (A2.2.11)

r2
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Appendix 2.3. The Interaction between an lon and a Water
Quadrupole

Instead of presenting a sophisticated general treatment for ion-quadrupole
interactions, a particular case of these interactions will be worked out. The special
case to be worked out is that corresponding to the water molecule being oriented
with respect to a positive ion so that the interaction energy is a minimum.

In this orientation (see Fig. A2.3.1), the oxygen atom and a positive ion
are on the Y axis which bisects the H—0—H angle. Further, the positive ion,
the oxygen atom, and the two hydrogen atoms are all considered in the XY
plane. The origin of the XY coordinate system is located at the point Q, which
is the center of the water molecule. The ion is at a distance r from the origin.

The ion-quadrupole interaction energy U;_q is simply given by the charge
on the ion times the potential v, at the site of the ion due to the charges of the
quadrupole,

Ui_q = zeoy, (A2.3.1)

But the potential v, is the sum of the potentials due to the four charges
di> 42> 43, and g, in the quadrupole (1 and 2 are the positive charges at the
hydrogen, and 3 and 4 are the negative charges at the oxygen). That is,

Y =11+ v+ v + (A2.3.2)

Each one of these potentials is given by the usual coulombic expression for the
potential
Y, = i{_ + ﬂ — _Eli —_— _f]_{_ (A23.3)

r rs rs ry

where the minus sign appears before the third and fourth terms because ¢, and g,

Fig. A2.3.1.
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are negative charges. Further, the magnitudes of all the charges are equal

|9:] = lga| = lgs| = lgs| = q (A2.3.4)
and, because of symmetrical disposition of the water molecule,

Fe=r and Fo=1r, (A2.3.5)

Hence, from Eqs. (A2.3.3), (A2.3.4), and (A2.3.5),

Y, = ?-q(—l— — —1—) (A2.3.6)

ri rs

It is obvious (see Fig. A2.3.1) that

rd = (r + a)®* + x* (A2.3.7)
2 2 2
— (1 p I --“—) (A2.3.8)
r r
and
rs=r—g (A2.3.9)
= r(l — ﬁ) (A2.3.10)
r
Thus,
1 1 2 2 2a \ %
1.1 (1 PR _ﬁ) (A2.3.11)
Yy r r r
and
-1
1 _1 (1 __’_3_) (A2.3.12)
¥ r r
One can now use the binomial expansion, i.e.,
1
A +m"=1F nm+ —”(”T"*“)— mF - (A2.3.13)

and drop off all terms higher than the third.t Thus,
1 1 1 2 + 2 3 2 232 4 2 4(1 a2 + x2
{ at + x a +3 [ (a® + x?) n o n ( ) ]}

_r—: ~ r —2_ ré e 8 & ré rt
(A2.3.14)
and, omitting all terms with powers r greater than 3, one has
O S N R, (A2.3.15)
r r 2 2r3

t It is at this stage that the treatment of ion—quadrupole interactions diverges from
that of ion—dipole interactions (¢f. Appendix 2.2). In the latter, the binomial expansion
was terminated after the second term.
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Further,
1 1 2
¥y r r ¥
1 2
= — + f; + —ﬁ; (A2.3.16)
r r r

Subtracting Eq. (A2.3.16) from Eq. (A2.3.15), one has

L S C o 213 Qo2 — x* — 28 (A2.3.17)

ry rs rt

and, therefore, by substitution of (A2.3.17) in (A2.3.6),

2q(x + 1
Yr == q(arz 2+ 5o [202g0" — 29f%) — 2qx*]  (A2.3.18)

The first term on the right-hand side of (A2.3.18) can be rearranged as
follows:
2q(x + ) = 2qa + 298

= 2 (29)d where d=a or f (A2.3.19)

Thus, as a first approximation, the water molecule can be represented as a dipolar
charge distribution in which there is a positive charge of +2g (due to the H
atoms) at a distance « from the origin on the bisector of the H—0—H angle
and a charge of —2q (due to the lone electron pair) at a distance —p from the
origin, it follows that

2 (2q)d = X magnitude of each charge of dipole
< distance of the charge from origin (A2.3.20)
The right-hand side of this expression is the general expression for the dipole
moment x, as is seen by considering the situation when « = 8, ie., X (29)d

= (29)2d, where 2d is the distance between the charges of the dipole, in which
case one obtains the familiar expression for the dipole moment g,

u = 2q2d (A2.3.21)
Thus, the first term on the right-hand side of Eq. (A2.3.18) is

_e+p (A2.3.22)
: . 3.

The second term can be interpreted as follows: Consider (2ge? — 2gf?). It
can be written thus

2g0* — 2qf* = qo* + qo* + (—¢g)f* + (—9)f°
= X qd,* where d,=a or (A2.3.23)
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But the general definition of a quadrupole moment is the magnitude of each
charge of quadrupole times the square of the distance of the charge from the
origin. Thus, X gd,? is the y component p,, of the quadrupole moment for the
particular coordinate system which has been chosen. Similarly, X 2gx? is the x
component p,, of the quadrupole moment. Thus,

2(2qa® — 2qB*) — 2gx* = 2pyy — Pas (A2.3.24)

One can combine 2p,, — p.. into a single symbol and talk of the quadrupole
moment py of the water molecule in the particular orientation of Fig. A2.3.1.
Hence,

2(2qa® — 2gf*) — 2gx® = pw (A2.3.25)

and, therefore, by substituting (A2.3.22) and (A2.3.25) in (A2.3.18),

no, Pw
y = —— A2.3.26
y Ry ( )

The ion-quadrupole interaction energy [c¢f. Eq. (A2.3.1)] thus becomes

Z€oft Zi&Pw
2 + 3
r 2r

Up_q= — (A2.3.27)

When a negative ion is considered, the water molecule turns around through
n, and one obtains by an argument similar to that for positive ions
Zieolt ze
Upq = — 0t Z&oPw (A2.3.28)

r? 2r®




CHAPTER 3

ION-ION
INTERACTIONS

3.1. INTRODUCTION

A model has been given for the breaking-up of an ionic crystal into
free ions which stabilize themselves in solution with solvent sheaths. One
central theme guided the account, the interaction of an ion with its neigh-
boring water molecule.

But ion-solvent interactions are only part of the story relating an ion
to its environment. When an ion looks out upon its surroundings, it sees
not only solvent dipoles but also other ions. The mutual interaction between
these ions constitutes an essential part of the picture of an electrolytic
solution.

Why are ion—ion interactions of importance? Because, as will be shown,
they affect the equilibrium properties of ionic solutions, and also because
they interfere with the drift of ions, for instance, under an externally applied
electric field (Chapter 4).

Now, the degree to which these interactions affect the properties of
solutions will depend on the mean distance apart of the ions, i.e., on how
densely the solution is populated with ions, because the interionic fields are
distance dependent. This ionic population density will in turn depend on
the nature of the electrolyte, i.e., on the extent to which the electrolyte
gives rise to 1ons in solution.

175
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3.2. TRUE AND POTENTIAL ELECTROLYTES

3.2.1. lonic Crystal Are True Electrolytes

An important point to recall regarding the dissolution of an ionic
crystal (Chapter 2) is that jonic lattices consist of ions even before they
come into contact with a solvent. In fact, all that a polar solvent does is
to use ion-dipole (or ion—quadrupole) forces to disengage the ions from
the lattice sites, solvate them, and disperse them in solution.

Such ionic crystals are known as true electrolytes or ionophores (the
Greek suffix phore means ‘“bearer of”’; thus, an ionophore is a ‘“substance
which bears ions’’). When a true electrolyte is melted, its ionic lattice is
dismantled and the pure liquid true electrolyte shows considerable ionic
conduction (Chapter 2). Thus, the characteristic of a true electrolyte is
that, in the pure liquid form, it is an ionic conductor. All salts belong to
this class. Sodium chloride, therefore, is a typical true electrolyte.

3.2.2. Potential Electrolytes: Nonionic Substances Which React
with the Solvent to Yield lons

A large number of substances, e.g., organic acids, show little conduc-
tivity in the pure liquid state. Evidently, there must be some fundamental
difference in structure between organic acids and inorganic salts, and this
difference is responsible for the fact that one pure liquid (the true electrolyte)
is an ionic conductor and the other is not.

What is this difference between, say, sodium chloride and acetic acid?
Electron diffraction studies furnish an answer. They show that gaseous
acetic acid consists of separate, neutral molecules and the bonding of the
atoms inside these molecules is essentially nonionic. These neutral molecules
retain their identity and separate existence when the gas condenses to give
liquid acetic acid. Hence, there are hardly any ions in liquid acetic acid
and, therefore, little conductivity.

Now, the first requirement of an electrolyte is that it should give rise
to a conducting solution. From this point of view, it appears that acetic
acid will never answer the requirements of an electrolyte; it is nonionic.
When, however, acetic acid is dissolved in water, an interesting phenomenon
occurs: ions are produced, and, therefore, the solutions conduct electricity.
Thus, acetic acid, too, is a type of electrolyte; it is not a true electrolyte,
but a potential one (‘‘one which can, but has not yet, become’). Potential
electrolytes are also called ionogens, i.e., “‘ion producers.”

How does acetic acid, which does not consist of ions in the pure liquid
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state, generate ions when dissolved in water? In short, how do potential
electrolytes work? Obviously, there must be some reaction between neutral
acetic acid molecules and water, and this reaction must lead to the splitting
of the acetic acid molecules into charged fragments, or ions.

A simple picture is as follows. Suppose that an acetic acid molecule
collides with a water molecule and, in the process, the H of the acetic acid
OH group is transferred from the oxygen atom of the OH to the oxygen
atom of the H,O. A proton has been transferred from CH,COOH to H,O

H 0 H H o H |

./ / 4 /
H-C-C + 0 — | H-C-C + | H—O

NN N AN

H oH H H 0 H

The result of the proton transfer is that two ions have been produced:
(1) an acetate ion and (2) a hydrated proton. Thus, potential electrolytes
(organic acids and most bases) dissociate into ions by ionogenic, or ion-
forming, chemical reactions with solvent molecules, in contrast to true
electrolytes, which give rise to ionic solutions by physical interactions be-
tween ions present in the ionic crystal and solvent molecules (Fig. 3.1).

The mechanism of the functioning of potential electrolytes will be
described in detail later (Chapter 5).

3.2.3. An Obsolete Classification: Strong and Weak Electrolytes

The classification into true and potential electrolytes is a modern one.
It is based on a knowledge of the structure of the electrolyte: whether, in
the pure form, it consists of an ionic lattice or neutral molecules (Fig. 3.2).
It is not based on the behavior of the solute in any particular solvent.

Historically, however, the classification of electrolytes was made on
the basis of their behavior in one particular solvent, i.e., water. Weak
electrolytes were those which yielded relatively poorly conducting solutions
when dissolved in water, and strong electrolytes were those which gave highly
conducting solutions when dissolved in water.

The disadvantage of this classification into strong and weak electrolytes
lies in the following fact: As soon as a different solvent, i.e., a nonaqueous
solvent, is chosen, what was a strong electrolyte in water may behave as
a weak electrolyte in the nonaqueous solvent. For example, sodium chloride
behaves like a strong electrolyte (i.e., yields highly conducting solutions)
in water; and acetic acid, like a weak electrolyte. In liquid ammonia, how-
ever, the conductance behavior of acetic acid 1s similar to that of sodium
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__SOLVENT WATER MOLECULES

PROTON OXALIC ACID
TRANSFER MOLECULE

TO

H ¢~ Ho-co Hy ¥ co0™
/0 + | — 0—H -+ |
H HO-CO H COOH
OXALIC ACID CRYSTALS Hz0" ION OXALATE ION
()

50
NaClL CRYSTAL LVATED IONS

Fig. 3.1. Schematic diagram to illustrate the difference in the way
potential electrolytes and true electrolytes dissolve to give ionic solu-
tions: (a) Oxalic acid (a potential electrolyte) undergoes a proton-
transfer chemical reaction with water to give rise to hydrogen ions and

oxalate ions. (b) Sodium chloride (a true electrolyte) dissolves by the
solvation of the Na+ and CI* ions in the crystal.

chloride in water, i.e., the solutions are highly conducting (Table 3.1).
This is an embarrassing situation. Can one say: Acetic acid is weak in
water and strong in liquid ammonia? What is wanted is a classification
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UNCHARGED MOLECULES o WATER OF CRYSTALLISATION
OF OXALIC ACID :

NaCl CRYSTAL

Fig. 3.2. Electrolytes can be classified as (a) potential electro-
lytes (e.g., oxalic acid) which, in the pure state, consist of un-
charged molecules and (b) true electrolytes (e.g., sodium chloride)
which, in the pure state, consist of ions.

TABLE 3.1

Conductance Behavior of Substances in Different Media

179

Equivalent conductance

Water Liquid ammonia

NaCl 106.7 284.0
Acetic acid 4.7 216.6
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of electrolytes which is independent of the solvent concerned. The classifi-
cation into true and potential electrolytes is such a classification. It does
not depend on the solvent.

3.2.4. The Nature of the Electrolyte and the Relevance of lon—
lon Interactions

Solutions of most potential electrolytes in water generally contain only
small concentrations of ions, and, therefore, ion-ion interactions in these
solutions are negligible; the ions are on the average too far apart. The
behavior of such solutions is governed predominantly by the position of
the equilibrium in the proton-transfer reaction between the potential elec-
trolyte and water (see Chapter 5).

In contrast, true electrolytes are completely dissociated into ions when
the parent salts are dissolved in water. The resulting solutions generally
consist only of solvated ions and solvent molecules. The dependence of
many of their properties on concentration (and, therefore, mean distance
apart of the ions in the solution) is determined, therefore, by the interac-
tions between ions. To understand these properties, one must understand
ion-ion interactions.

Further Reading

1. G. Kortum and J. O’M. Bockris, Textbook of Electrochemistry, Vol. 1, Elsevier,

Amsterdam, 1951.
2. R. M. Fuoss and F. Accascina, Electrolytic Conductance, Interscience Pub-
lishers, Inc., New York, 1959.

3.3. THE DEBYE-HUCKEL (OR ION-CLOUD) THEORY OF ION-
ION INTERACTIONS

3.3.1. A Strategy for a Quantitative Understanding of lon—-lon
Interactions

The first task in thinking in detail about ion-ion interactions is to
evolve a quantitative measure of these interactions.?

One approach is to follow a procedure similar to that used in the
discussion of ion-solvent interactions (cf. Section 2.2.1). Thus, one can
consider an initial state in which ion—ion interactions do not exist (are

t The question of how one obtains an experimental measure of ion-ion interactions
is discussed in Section 3.4.
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Fig. 3.3 The free energy AG,_; of ion—ion in-
teractions is the free-energy change in going
from a hypothetical electrolytic solution, in which
ion—ion interactions do not operate, to a real so-
lution, in which these interactions do operate.

“‘switched off”’) and a final state in which the interactions are in play (are
“switched on’’). Then, the free-energy change in going from the initial
state to the final state can be considered the free energy AG;_;, of ion-ion
interactions (Fig. 3.3).

The final state is obvious; it is ions in solution. The initial state is
not so straightforward; one cannot take ions in vacuum, because then there
will be ion-solvent interactions when these ions enter the solvent. The
following approach is therefore adopted. One conceives of a hypothetical
situation in which the ions are there in solution but are nevertheless not
interacting. Now, if ion-ion interactions are assumed to be electrostatic
in origin (a similar assumption was made with regard to ion-solvent inter-
actions, cf. Section 2.2.2), then the imaginary initial state of noninteracting
ions implies an assembly of discharged ions.

Thus, the process of going from an initial state of noninteracting ions
to a final state of ion—ion interactions is equivalent to taking an assembly
of discharged ions, charging them up, and setting the electrostatic charging
work equal to the free energy AG;_; of ion-ion interactions (Fig. 3.4).

One point about the above procedure should be borne in mind. Since,

r r
P ¥ P A D I':j
™ ) | cHARGING wORK @ & @
O () I ® ¥, i:
\\_._/ . = ﬂl'\_'ll_[ 2 1_ 4 _/"_‘\I -
‘-" I\.J.."I;:: ' @ @ ™

\/DISCHARGED IONS CHARGED IONS~

Fig. 3.4. The free energy AG,_; of ion—ion interactions is
the electrostatic work of taking an imaginary assembly of dis-
charged ions and charging them up to obtain a solution of
charged ions.
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in the charging process, both the positively charged and negatively charged
ionic species are charged up, one obtains a free-energy change which involves
all the ionic species constituting the electrolyte. Generally, however, the
desire is to isolate the contribution to the free energy of ion-ion inter-
actions arising from one ionic species i only. This partial free-energy change
is, by definition, the chemical-potential change Au;_; arising from the inter-
actions of one ionic species with the ionic assembly.

To compute this chemical-potential change Au;_;, rather than the free-
energy change AG;_;, one must adopt an approach similar to that used
in the Born theory of solvation. One thinks of an ion of species i and imagines
that this reference ion alone of all the ions in solution is in a state of zero
charge (Fig. 3.5). If one computes the work of charging up the reference
ion (of radius r;) from a state of zero charge to its final charge of z;e,,
then the charging work W times the Avogadro number N, is equal to the
partial molar free energy of ion—ion interactions, i.e., to the chemical poten-

tial of 1on—ion interactions
Aui 1 = N W (3.1)

Further, one can consider a charged sphere (of radius r; and charge z;e,)
as a model for an ion (¢f. Section 2.2.2) and use the expression for the work
of charging the sphere from a state of zero charge to a charge of z;e, to
represent the work W of charging an ion, i.e.,

- (zi€0)?
W= e (2.16)
o 2 &r; (3.2)

But z,e./er; is the electrostatic potential y at the surface of the ion, and,
therefore,

N i€
Api ;= N W = ————Azz >y (3.3)

The essence of the task, therefore, in computing the chemical-potential
change due to the interactions of the ionic species i with the ionic solution,
is the calculation of the electrostatic potential produced at a reference ion
by the rest of the ions in solution. Theory must aim at this quantity.

If one knew the time-average spatial distribution of the ions, then one
could find out how all the other charges are distributed as a function of
distance from the reference ion. At that stage, one of the fundamental laws
of electrostatics could be used, namely, the law of the superposition of
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Fig. 3.56. The chemical potential Ay, ; arising from the inter-
actions of an ionic species / with the electrolytic solution is
equal to the Avogadro number times the electrostatic work of
taking an imaginary solution in which one reference ion alone is
discharged and charging this reference ion up to its normal charge.

potentials, according to which the potential at a point due to an assembly
of charges is the sum of the potentials due to each of the charges in the
assembly.

Thus, the problem of calculating the chemical-potential change Au;_;
due to the interactions between one ionic species and the assembly of all
the other ions has been reduced to the following problem: On a time
average, how are the ions distributed around any specified ion? If that
distribution becomes known, it would be easy to calculate the electrostatic
potential of the specified ion, due to the other ions and then, by Eq. (3.3),
the energy of that interaction. Thus, the task is to develop a model that
describes the equilibrium spatial distribution of ions inside an electrolytic
solution and then to describe the model mathematically.

3.3.2. A Prelude to the lonic-Cloud Theory

A spectacular advance in the understanding of the distribution of
charges around an ion in solution was achieved in 1923 by Debye and
Hiickel. It was as significant in the understanding of ionic solutions as the
Maxwell theory of the distribution of velocities in the understanding of
gases.

Before going into the details of their theory, a moment’s reflection
on the magnitude of the problem would promote appreciation of their
achievement.

Consider, for example, a 10~3 mole liter~ aqueous solution of sodium
chloride. There will be 10-¢ x 6.023 x 10 sodium ions per cubic centi-
meter of solution and the same number of chloride ions, together, of course,
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with the corresponding number of water molecules. Nature takes these
2 X 6.023 x 10Y ions cm~3 and arranges them so that there is a particular
time-average® spatial distribution of the ions. The number of particles
involved are enormous, and the situation appears far too complex for
mathematical treatment.

But there exist conceptual techniques for tackling complex situations.
One of them is model building. What is done is to conceive a model which
contains only the essential features of the real situation. All the thinking
and mathematical analysis is done on the (relatively simple) model, and,
then, the theoretical predictions are compared with the experimental be-
havior of the real system. A good model simulates nature. If the model
yields wrong answers, then one tries again by changing the imagined model
until one arrives at a model, the theoretical predictions of which agree
well with experimental observations.

The genius of Debye and Hiickel lay in their formulation of a very
simple but powerful model for the time-average distribution of ions in very
dilute solutions of electrolytes. From this distribution, they were able to
get the electrostatic potential contributed by the surrounding ions to the
total electrostatic potential at the reference ion and, hence, the chemical-
potential change arising from ion-ion interactions [¢f. Eq.(3.3)]. Attention
will now be focused on their approach.

The electrolytic solution consists of solvated ions and water molecules.
The first step in the Debye-Hiickel approach is to select arbitrarily any
one ion out of the assembly and call it a reference ion or central ion. Only
the reference ion is given the individuality of a discrete charge. What is
done with the water molecules and the remaining ions? The water mole-
cules are looked upon as a continuous dielectric medium. The remaining
ions of the solution (i.e., all ions except the central ion) are lapsed into
anonymity, their charges being “smeared out” into a continuous spatial
distribution of charge (Fig. 3.6). Whenever the concentration of ions of
one sign exceeds that of the opposite sign, there will arise a net or excess
charge in the particular region under consideration. Obviously, the total
charge in the atmosphere must be of opposite sign and exactly equal to
the charge on the reference ion.

t Using an imaginary camera (with exposure time of ~ 10-'2sec), suppose that it were
possible to take snapshots of the ions in an electrolytic solution. Different snapshots
would show the ions distributed differently in the space containing the solution; but
the scrutiny of a large enough number of snapshots (say, ~ 10'%) would permit one
to recognize a certain average distribution characterized by average positions of the
ions; this is the time-average spatial distribution of the ions.
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Fig. 3.6. A schematic comparison of (a) the assembly of
ions and solvent molecules which constitute a real electro-
lytic solution and (b) the Debye—Hickel picture in which
a reference ion is surrounded by net charge density o due
to the surrounding ions and a dielectric continuum of the
same dielectric constant € as the bulk solvent.

Thus, the electrolytic solution is considered to consist of a central ion
standing alone in a continuum. Thanks to the water molecules, this con-
tinuum acquires a dielectric constant (taken to be the value for bulk water).
The charges of the discrete ions which populate the environment of the
central ion are thought of as smoothed out and contribute to the con-
tinuum dielectric a net charge density (excess charge per unit volume).
Thus, water enters the analysis in the guise of a dielectric constant ¢; and
the ions, except the specific one chosen as the central ion, in the form of
an excess charge density g (Fig. 3.7).

Thus, the complicated problem of the time-average distribution of
ions inside an electrolytic solution reduces, in the Debye-Hiickel model,
to the mathematically simpler problem of finding out how the excess
charge density p varies with distance r from the central 1on.

An objection may be raised at this point. The electrolytic solution as
a whole is electroneutral, i.e., the net charge density o is zero. Then, why
is not ¢ = 0 everywhere?

So as not to anticipate the detailed discussion, an intuitive answer
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Fig. 3.7. The Debye-Hickel model is based upon selecting
one ion as a reference ion, replacing the solvent molecules by a
continuous medium of dielectric constant € and the remaining
ions by an excess charge density p, (the shading used in this
book to represent the charge density is not indicated in this
figure).

will first be given. If the central ion is, for example, positive, it will exert an
attraction for negative ions; hence, there should be a greater aggregation
of negative ions than of positive ions in the neighborhood of the central
positive ion, i.e., ¢ 7~ 0. An analogous situation, but with a change in sign,
obtains near a central negative ion. At the same time, the thermal forces
are knocking the ions about in all directions and trying to establish elec-
troneutrality, i.e., the thermal motions try to smooth everything to ¢ = 0.
Thus, the time average of the electrostatic forces of ordering and the thermal
forces of disordering is a Jocal excess of negative charge near a positive ion
and an excess of positive charge near a negative ion. Of course, the excess
positive charge near a negative ion compensates the excess negative charge
near a positive ion, and the overall effect is electroneutrality, i.e., a g of
zero for the whole solution.

3.3.3. How the Charge Density near the Central lon Is Deter-
mined by Electrostatics: Poisson’s Equation

Consider an infinitesimally small volume element dv situated at a
distance r from the arbitrarily selected central ion, upon which attention
is to be fixed during the discussion (Fig. 3.8), and let the net charge density
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ELECTROSTATIC
POTENTIAL, Y,

VOLUME ELEMENT,dv

r CHARGE DENSITY, f}

\neFERENce ION

Fig. 3.8. At a distance r from the refer-
ence ion, the excess charge density and
electrostatic potential, in an infinitesimal vol-
ume element dv, are g, and y,, respectively.

inside the volume element be p,. Further, let the average® electrostatic
potential in the volume element be y,. The question is: What is the relation
between the excess density g, in the volume element and the time-average
electrostatic potential y,?

One relation between g, and p, is given by Poisson’s equation (Ap-
pendix 3.1). There is no reason to doubt that there is spherically sym-
metrical distribution of positive and negative charge and, therefore, excess
charge density around a given central ion. Hence, Poisson’s equation can

be written as
I d (,dp\  4n
rt dr (r dr) T o (3:4)

where ¢ is the dielectric constant of the medium and is taken to be that of
bulk water.

3.3.4. How the Excess Charge Density near the Central lon Is
Given by a Classical Law for the Distribution of Point
Charges in a Coulombic Field

The excess charge density in the volume element dv is equal to the
total ion density (total number of ions per unit volume) times the charge
on these ions. Let there be, per unit volume, n, ions of type 1, each bearing
charge z,e,, n, of type 2 with charge z,e,, and n; of type i with charge z;e,,

t Actually, there are discrete charges in the neighborhood of the central ion and, therefore,
discontinuous variations in the potential. But, because in the Debye-Hiickel model
the charges are smoothed out, the potential is averaged out.
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where z; is the valency of the ion and e, is the electronic charge. Then,
the excess charge density g, in the volume element dv is given by

0, = MZ1€g + NyZo€y + - - -+ n;Z;€, (3.5)
= 2 nz;e (3.6)

To proceed further, one must link up the unknown quantities n,,
Hyy. .., N;,... to known quantities. The link is made on the basis of the
Boltzmann distribution law of classical statistical mechanics. Thus, one

writes
n; = nde~U/*T) (3.7)

where U can be described either as the change in potential energy of the i
particles when their concentration in the volume element dv is changed
from the bulk value n? to n; or as the work that must be done by a hypo-
thetical external agency against the time average of the electrical and other
forces between ions in producing the above concentration change. Since
the potential energy U relates to the time average of the forces between
ions rather than to the actual forces for a given distribution, it is also
known as the potential of average force.

If there are no ion-ion interactional forces, U = 0; then, n; = n?,
which means that the local concentration would be equal to the bulk
concentration. If the forces are attractive, then the potential change U is
negative (i.e., negative work is done by the hypothetical external agency)
and n; > n?; there is a local accumulation of ions in excess of their bulk
concentrations. If the forces are repulsive, the potential-energy change is
positive (i.e., the work done by the external agency is positive) and n; < n?;
there is local depletion of ions.

In the first instance, and as a first approximation, one may ignore all
types of ion-ion interactions except those deriving from simple coulombic?
forces. Thus, short-range interactions (e.g., dispersion interactions) are
excluded. This is a fundamental assumption of the Debye-Hiickel theory.
Thus, the potential of average force U simply becomes the coulombic
potential energy of an ion of charge z;e, in the volume element dv, i.e., to

t In this book, the term coulombic is restricted to forces (with r~* dependence on distance)
which are based directly on Coulomb’s law. More complex forces, e.g., those which
vary as r~* or r~7, may result as a net force from the resultant of several different
coulombic interactions. Nevertheless, such more complex results of the interplay of
several coulombic forces will be called noncoulombic.
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the charge z;e, on the ion times the electrostatic potential y, in the volume

element dv. That is,
U= Zi€oYy (308)

The Boltzmann distribution law (3.7) thus assumes the form

n; = niOe—Zieotp,./(kT) (3.9)

Now that n;, the concentration of the ionic species / in the volume
element dv, has been related to its bulk concentration n2, the expression
(3.6) for the excess charge density in the volume element dv becomes

0r =X nizieg =2 n 2z e ezicovr I (3.10)
] 1

3.3.56. A Vital Step in the Debye—Hiickel Theory of the Charge
Distribution around lons: Linearization of the Boltzmann
Equation

At this point of the theory, Debye and Hiickel made a move which
was not only mathematically expedient but also turned out to be wise.
They decided to carry out the analysis only for systems in which the average
electrostatic potential g, would be small so that

zieow, < kT or Zz“]'f’ <1 (3.11)

Based on this assumption, one can expand the exponential of Eq. (3.10)
in a Taylor series, i.e.,

L Zieol, | Z:80Y, 2
24804 r/(kT) — P ____0___. S —_ .o

and neglect all except the first two terms. Thus, in (3.10),

0, = 2 niozieo(l - ZL'ZO;-I,)T) (3.13)

05,2, 2
=X nizieg — 3 iik%’,‘i”_ (3.14)

i i
The first term )} n0z;e, gives the charge on the electrolytic solution
as a whole. But this is zero because the solution as a whole must be elec-

trically neutral. The local excess charge densities near ions cancel out
because the excess positive charge density near a negative ion is compen-
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sated for by an excess negative charge density near a positive ion. Hence,

Z nz.e, =0 (3.15)
and one is left with
. nz ke,
0, =—2 kT (3.16)

3.3.6. The Linearized Poisson-Boltzmann Equation

The stage is now set for the calculation of the potential g, and the
charge density g, in terms of known parameters of the solution.

Notice that one has obtained two expressions for the charge density
0, in the volume element dv at a distance r from the central ion. One has
the Poisson equation [¢f. Eq. (3.4)]

R 1 d , Ay,
0r = . [rz pe (r P )] (3.17)

and one has the “linearized” Boltzmann distribution

— niozizeozy)r 3.18

QT - ; kT ( . )

where Y; refers to the summation over all species of ions typified by i.
If one equates these two expressions one can obtain the linearized

Poisson-Boltzmann (P-B) expression

L d [, dp\ (4« .
s (r2 g‘):(ekTgniOZi?eO?) " (3.19)

The constants in the right-hand parentheses can all be lumped together
and called a new constant »? i.e.,

4n
2 052, 2 .20
x—g:T}‘;nzz,eo (3.20)

At this point, the symbol » has come in only to reduce the tedium
of writing. It turns out later, however, that x is not only a shorthand symbol;
it contains information concerning several fundamental aspects of the
distribution of ions around an ion in solution. In Chapter 7, it will be shown
that it also contains information concerning the distribution of charges near
a metal surface in contact with an ionic solution. In terms of x, the linear-
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ized P-B expression (3.19) is

1 d (,dy,\
el (r dr)—-;mp, (3.21)

3.3.7. The Solution of the Linearized P-B Equation

The rather messy-looking linearized P-B equation (3.21) can be tidied
up by a mathematical trick. Introducing a new variable u defined by

y =L (3.22)
r
one has
dp, _d p kL
e dr r  rt r dr

r2 dr dr r: dr " dr
1 du d*u du
= ( ar AT 717)
1 d%u
= e (3.23)
Hence, the differential equation (3.21) becomes
1 d%u  ,p
Tar Ry (24
or
a? ,
dr"; = %% (3.25)

To solve this simple differential equation, it is recalled that the dif-
ferentiation of an exponential function results in the multiplication of that
function by the constant in the component. For example,

d et = | yetHr

dr

and (3.26)

d?
__(_1___2_ et — ylpExr
r
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Hence, if u is an exponential function of r, one will obtain a differential
equation of the form of Eq. (3.25). In other words, the ‘“primitive” or
“origin” of the differential equation must have had an exponential in x»r.

Two possible exponential functions, however, would lead to the same
final differential equation; one of them would have a positive exponent
and the other a negative one [¢f. Eq. (3.26)]. The general solution of the
linearized P-B equation can, therefore, be written as

n = Ae=*" 4 Betr (327)

where 4 and B are constants to be evaluated. Or, from Eq. (3.22),

e*"){r e+){f

pr=A——+ B— (3.28)

The constant B is evaluated by using the boundary condition that,
far enough from a central ion situated at » = 0, the thermal forces com-
pletely dominate the coulombic forces which decrease as r2, and there is
electroneutrality, i.e., the electrostatic potential v, vanishes at distances
sufficiently far from such an ion, g, — 0 as r — co. This condition would
be satisfied only if B = 0. Thus, if B had a finite value, Eq. (3.29) shows
that the electrostatic potential would shoot up to infinity, i.e., y, — oo
as r — oo, a physically unreasonable proposition. Hence,

e—xr

(3.29)

Yr = A r

To evaluate the integration constant 4, a hypothetical condition will

be considered in which the solution is so dilute and, on the average, the

ions are so far apart that there is a negligible interionic field. Further, the

central 1on is assumed to be a point charge, i.e., to have a radius negligible

compared with the distances otherwise to be considered. Hence, the po-

tential near the central ion is, in this special case, simply that due to an
isolated point charge of value z;e,,

246

— 3.30
Y= (3.30)

At the same time, for this hypothetical solution in which the concen-
tration tends to zero, i.e., n?— 0, it is seen from Eq. (3.20) that » — 0.
Thus, in Eq. (3.29), e~ — 1, and one has

-2 3.31
Y, . (3.31)
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Fig. 3.9. The variation of the electrostatic
potential v as a function of distance from
the central ion expressed in units of r/x.

Hence, by combining Egs. (3.30) and (3.31),

A = Zi (3.32)
&
By introducing this expression for A4 into Eq. (3.29), the result is
_Zito €
pe =0 = (3.33)

Here, then, is the appropriate solution of the /inearized P-B equation (3.21).
It shows how the electrostatic potential varies with distance r from an
arbitrarily chosen reference ion (Fig. 3.9).

3.3.8. The lonic Cloud around a Central lon

In the Debye-Hiickel model of a dilute electrolytic solution, a reference
ion sitting at the origin of the spherical coordinate system is surrounded
by the smoothed-out charge of the other ions. Further, because of the local
inequalities in the concentrations of the positive and negative ions, the
smoothed-out charge of one sign does not (locally) cancel out the smoothed-
out charge of the opposite sign; there is a local excess charge density of
one sign.

Now, as explained in Section 3.3.2, the principal objective of the Debye-
Hiickel theory is to calculate the time-average spatial distribution of the
excess charge density around a reference ion. How is this objective attained?

The Poisson equation (3.4) relates the potential at » from the sample
ion to the charge density at r, i.e.,

14 (,2 d'/’__r) __ A (3.4)

r? dr dr £
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r

Fig. 3.10. The variation of the excess
charge density o as a function of distance
from the central ion.

Further, one has the linearized P-B equation

) o

From these two Egs. (3.4) and (3.21), one has the linear relation between
excess charge density and potential, i.e.,

€
0r = — 74;;%21/)1' (3.34)
and by inserting the solution (3.33) for the linearized P-B equation, the

result is

_ Ziey , e~ 3.35
Qr 476 ’C r ( * )

Here then is the desired expression for the spatial distribution of the
charge density with distance r from the central ion (Fig. 3.10). Since the
excess charge density results from an unequal distribution of positive and
negative ions, Eq. (3.35) also describes the distribution of ions around a
reference or sample ion.

To understand this distribution of ions, however, one must be suf-
ficiently attuned to mathematical language to read the physical significance
of Eq. (3.35). The physical ideas implicit in the distribution will therefore
be stated in pictorial terms. One can say that the central reference ion is
surrounded by a “cloud,” or ‘“atmosphere,” of excess charge (Fig. 3.11).
This ionic cloud extends into the solution (i.e., r increases), and the excess
charge density ¢ decays with distance r in an exponential way. The
excess charge residing on the ion cloud is opposite in sign to that of the
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— CENTRAL POSITIVE ION

i . — SURROUNDED BY A
: CLOUD OF NET CHARGE
EQUAL AND DPPOSITE

TO THAT OF THE CENTRAL
ION

Fig. 3.11. The distribution of excess charge
density around a central ion can be pictured
as a cloud, or atmosphere, of net charge
around the central ion.

central ion. Thus, a positively charged reference ion has a negatively charged
ion atmosphere, and vice versa (Fig. 3.12).

Up to now, the charge density at a given distance has been discussed.
The total excess charge contained in the ionic atmosphere which surrounds
the central ion can, however, easily be computed. Consider a spherical shell
of thickness dr at a distance r from the origin, i.e., from the center of the
reference ion (Fig. 3.13). The charge dg in this thin shell is equal to the
charge density p, times the volume 47nr?dr of the shell, 1.e.,

dq = o 4nrtdr (3.36)

The total charge g.,,q contained in the ion atmosphere is obtained by
summing the charges dg contained in all the infinitesimally thick spherical
she'ls. In other words, the total excess charge surrounding the reference
ion is computed by integrating dg (which is a function of the distance r
from the central ion) from a lower limit corresponding to the distance from
the central ion at which the cloud is taken to commence to the point where
the cloud ends. Now, the ion atmosphere begins at the surface of the ion;
so the lower limit depends upon the model of the ion. The first model
chosen by Debye and Hiickel was that of point-charge ions, in which case
the lower limit is » = 0. The upper limit for the integration is r — oo be-

// 0 a,

NEGATIVELY-CHARGED
IONIC CLOUD

- POSITIVELY—CHARGE
L IONIC CLOUD

Fig. 3.12. A positively charged ion has a negatively
charged ionic cloud, and vice versa.
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. dr

™ CHARGE IN SHELL = dq
=P, 4nfdr

Fig. 3.13. A spherical shell, of thickness dr, at a
distance r from the center of the reference ion.

cause the charge of the ionic cloud decays exponentially into the solution
and becomes zero only in the limit r — oo.

Thus,
Qo = | dg =" gdurtdr (3.37)
0

r=0 r=

and, by substituting for g, from Eq. (3.35), the result is

r>00 7. eo e T
— ' 2
Gelond — ——dnr® dr

= — 2,6, j " e (ar) d(or) (3.38)

The integration can be done by parts (Appendix 3.2), leading to the result
deloud = —Zi€o (339)

which means that a central ion of charge +z;e, is enveloped by a cloud
containing a total charge of —z,e, (Fig. 3.14). Thus, the total charge on
the surrounding volume is just equal and opposite to that on the reference
1on. This is of course precisely how things should be so that there can be
electroneutrality for the ionic solution taken as a whole; a given ion, to-
gether with its cloud, has a zero net charge.

How is this equal and opposite charge of the ion atmosphere distrib-
uted in the space around the central ion? It is seen from Egs. (3.35) and
(3.36) that the net charge in a spherical shell of thickness dr and at a distance

r from the origin is
dq = —zeqe "% dr (3.40)

Thus, the excess charge on a spherical shell varies with r and has a maximum
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Fig. 3.14. The total charge —ze; on the ionic cloud
is just equal and opposite to that +ze, on the central
ion.

value for a value of r given by

_ dq
0=7

= [~ zieg?(e )]

dr

d
= —z;em’ = (e=*r)

d
= —z;ep?(e™"" — rxe™") 3.41)

Since (z;epe®) is finite, Eq. (3.41) can be true only when

0 =e* — ree*"
or
r = x1 (3.42)

Hence, the maximum value of the charge contained in a spherical
shell (of infinitesimal thickness dr) is attained when the spherical shell is
at a distance r = »~! from the reference ion (Fig. 3.15). For this reason
(but see also Section 3.3.9), »~! is known as the thickness, or radius, of the
ionic cloud which surrounds a reference ion. An elementary dimensional
analysis [e.g., of Eq. (3.43)] will indeed reveal that x! has the dimensions
of length. Also, »~! is sometimes referred to as the Debye-Hiickel reciprocal
length.
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CHARGE ENCLOSED
IN A dr—THICK

SPHERICAL SHELL
dq IS MAXIMUM AT r=K™

(i7%)
DISTANGE IN K™ UNITS

Fig. 3.15. The distance variation (in »~! units) of the
charge dq enclosed in a dr-thick spherical shell, showing
that dg is a maximum at r =z,

It may be recalled that x~! is given [from Eq. (3.20)] by

ekT 1 3
= g 343

As the concentration tends toward zero, the cloud tends to spread out
increasingly (Fig. 3.16). Values of the thickness of the ion atmosphere
for various concentrations of the electrolyte are presented in Table 3.2.

320
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Fig. 3.16. The variation in the thickness »x~! of the ionic
cloud as a function of electrolyte concentration.
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TABLE 3.2

Thickness of lonic Atmosphere (in Angstroms) at Various Concentrations
and for Various Types of Salts

Type of salt

C,
moles liter—* 11 12 22 13
104 304 176 152 124
10-3 96 55.5 48.1 39.3
10-2 304 17.6 15.2 12.4
10! 9.6 5.5 4.8 3.9

3.3.9. How Much Does the lonic Cloud Contribute to the Elec-
trostatic Potential v, at a Distance r from the Central lon?

An improved feel for the effects of ionic clouds emerges from con-
sidering the following interesting problem.

Imagine, in a thought experiment, that the charge on the ionic cloud
does not exist. There is only one charge now, that on the central ion. What
is the potential at distance r from the central ion? It is simply given by
the familiar formula for the potential at a distance r from a single charge,

namely,

_Z;€g
y, =2 (3.44)

Then, let the charge on the cloud be switched on. The potential v,
at the distance r from the central ion is no longer given by the central ion
only. It is given by the law of superposition of potentials (Fig. 3.17), i.e.,

we

| @ |-+

(9) (=) ©
Fig. 3.17. The superposition of the potential o, due to the ion

and that ygou4 due to the cloud yields the total potential at a dis-
tance r from the central ion.
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¥, 1s the sum of the potential due to the central ion and that due to the ionic
cloud

Yr = Yion + Veloud (3.45)

The contribution yg,,q can thus be easily found. One rearranges Eq.
(3.45) to read

Yetoud = ¥+ — Pion (3-46)

and substitutes for ;,, with Eq. (3.44) and for y, with the Debye-Hiickel
expression [Eq. (3.33)]. Then,

Zieg €77 Zie

Yeloud = e P or
_Zi€
~ e 1) (3.47)

The value of » [¢f. Eq. (3.20)] is proportional to Y, n%z 2,2 In sufficiently
dilute solutions, ¥; n9z%2 can be taken as sufficiently small to make »r < 1,

e —1~1—xr—1~ —ur (3.48)

and, based on this approximation,
Zi€9

— (3.49)

Yeloud — —

By introducing the expressions (3.44) and (3.49) into the expression (3.45)
for the total potential y, at a distance r from the central ion, it follows that

Zi€q Zi€g

y, = (3.50)

er ex1

The second term, which arises from the cloud, reduces the value of the
potential to a value /ess than that if there were no cloud. This is consistent
with the model; the cloud has a charge opposite to that on the central ion
and must, therefore, alter the potential in a sense opposite to that due to
the central ion.

The expression
Z;€9
ex?

(3.49)

Yelond =

leads to another, and helpful, way of looking at the quantity »~. It is
seen that y.,,q is independent of r, and, therefore, the contribution of the
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Fig. 3.18. The contribution ygouq Of the ionic
cloud to the potential at the central ion is equiv-
alent to the potential due to a single charge,
equal and opposite to that of the central ion,
placed at a distance x~! from the central ion.

cloud to the potential at the site of the point-charge central ion can be
considered given by Eq. (3.49) above. But, if the entire charge of the ionic
atmosphere [which is —z,e, as required by electroneutrality—cf. Eq. (3.39)]
were placed at a distance »~! from the central ion, then the potential prod-
uced at the reference ion would be —z;e,/(ex1). It is seen therefore from
Eq. (3.49) that the effect of the ion cloud, namely, ¥gouq, 1S €quivalent to
that of a single charge, equal in magnitude but opposite in sign to that of
the central ion, placed at a distance ! from the reference ion (Fig. 3.18).
This is an added—and more important—reason that the quantity »~1 is
termed the effective thickness or radius of the ion atmosphere surrounding
a central ion (cf. Section 3.3.8).

3.3.10. The lonic Cloud and the Chemical-Potential Change
Arising from lon—lon Interactions

It will be recalled (see Section 3.3.1) that it was the potential at the
surface of the reference ion which needed to be known in order to calculate
the chemical-potential change Au;_; arising from the interactions between
a particular ionic species i and the rest of the ions of the solution, i.e., one
needed to know y in Eq. (3.3),

. N4ze,

Apig =2y (33)

It was to obtain this potential v that Debye and Hiickel conceived
their model of an ionic solution. The analysis threw up the picture of an
ion being enveloped in an ionic cloud. But what is the origin of the ionic
cloud? It is born of the interactions between the central ion and the ions
of the environment. If there were no interactions (e.g., coulombic forces
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between ions), thermal forces would prevail, distribute the ions randomly
(o = 0), and wash out the ionic atmosphere. It appears therefore that the
simple ionic cloud picture has not only led to success in describing the
distribution of ions but also given the electrostatic potential . ,,q at the
surface of a reference ion due to the interactions between this reference ion
and the rest of the ions in the solution (the quantity required for reasons
declared in Section 3.3.1).

Thus, the expression (3.49) for y,.uq can be substituted for y in Eq.
(3.3) with the result that

Na (ieo)® (3.51)

Apir = = 2 ex?

The Debye-Hiickel ionic-cloud model for the distribution of ions in
an electrolytic solution has permitted the theoretical calculation of the
chemical-potential change arising from ion-ion interactions. But, how is
this theoretical expression to be checked, i.e., connected with a measured
quantity? It is to this testing of the Debye-Hiickel theory that attention will
now be turned.
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3.4. ACTIVITY COEFFICIENTS AND ION-ION INTERACTIONS

3.4.1. The Evolution of the Concept of Activity Coefficient

The existence of ions in solution, of interactions between these ions,
and of a chemical-potential change Au;_; arising from ion—ion interactions
have all been taken to be self-evident in the treatment hitherto presented
here. This, however, is a modern point of view. The thinking about elec-
trolytic solutions actually developed along a different path.

Tonic solutions were at first treated in the same way as nonelectrolytic
solutions, though the latter do not contain (interacting) charged species.
The starting point was the classical thermodynamic formula for the chemical
potential u; of a nonelectrolyte solute

i = ,u,-o + RT In X; (352)
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In this expression, x; is the concentration® of the solute in mole fraction
units, and w0 is its chemical potential in the standard state, i.e., when x;
assumes a standard or normalized value of unity

Wi = pd when x; =1 (3.53)

Since the solute particles in a solution of a nonelectrolyte are un-
charged, they do not engage in long-range coulombic interactions. The
short-range interactions arising from dipole-dipole or dispersion forces
become significant only when the mean distance between the solute particles
is small, i.e., when the concentration of the solute is high. Thus, one can
to a good approximation say that there are no interactions between solute
particles in dilute nonelectrolyte solutions. Hence, if Eq. (3.52) for the
chemical potential of a solute in a nonelectrolyte solution (with noninter-
acting particles) is used for the chemical potential of a ionic species i in
an electrolytic solution, then it is tantamount to ignoring the long-range
coulombic interactions between ions. In an actual electrolytic solution,
however, ion-ion interactions operate whether one ignores them or not.
It is obvious, therefore, that measurements of the chemical potential u;
of an ionic species—or, rather, measurements of any property which depends
on the chemical potential—would reveal the error in Eq. (3.52), which i1s
blind to ion-ion interactions. In other words, experiments show that, even

in dilute solutions, w; — u % RTIn x;

In this context, a frankly empirical approach was adopted by earlier
workers, not yet blessed by Debye and Hiickel’s light. Solutions that
obeyed Eq. (3.52) were characterized as ideal solutions since this equation
applies to systems of noninteracting solute particles, i.e., ideal particles.
Electrolytic solutions which do not obey the equation were said to be non-
ideal. In order to use an equation of the form of (3.52) to treat nonideal
electrolytic solutions, an empirical correction factor f; was introduced by
Lewis as a modifier of the concentration term?

Hi — ,u?;o = RT In xiﬂ (354)

t The value of x,° in the case of an electrolyte derives from the number of moles of ions
in species 7 actually present in solution. This number need not be equal to the number
of moles of i expected of dissolved electrolyte; if, for instance, the electrolyte is a
potential one, then only a fraction of the electrolyte may react with the solvent to form
ions, i.e., the electrolyte may be incompletely dissociated.

{ The standard chemical potential ;,° has the same significance here as in Eq. (3.52)
for ideal solutions. Thus, /1,° can be defined either as the chemical potential of an ideal
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It was argued that, in nonideal solutions, it was not just the analytical
concentration x; of species i, but its effective concentration x;f; which
determined the chemical-potential change u; — u2. This effective concen-
tration x;f; was also known as the activity a; of the species i, i.e.,

a; = x;f; (3.55)

and the correction factor f;, as the activity coefficient. For ideal solutions,
the activity coeflicient is unity, and the activity a; becomes identical to the
concentration Xx;, 1.e.,

a; = X; when f; =1 (3.56)

Thus, the chemical-potential change in going from the standard state
to the final state can be written as

Hi — ,u,;o = RT In X3 + RTlnf; (357)

Equation (3.57) summarizes the empirical or formal treatment of the
behavior of electrolytic solutions. Such a treatment cannot furnish a theo-
retical expression for the activity coefficient f;. It merely recognizes that
expressions such as (3.52) must be modified if significant interaction forces
exist between solute particles.

3.4.2. The Physical Significance of Activity Coefficients

For a hypothetical system of ideal (noninteracting) particles, the
chemical potential has been stated to be given by

u; (ideal) = u® + RTIn x; (3.52)

For a real system of interacting particles, the chemical potential has been
expressed in the form

ui (real) =ul 4+ RTInx; + RT In f; (3.57)

Hence, to analyze the physical significance of the activity coefficient
term in Eq. (3.57), it is necessary to compare this equation with Eq. (3.52).
It is obvious that, when Eq. (3.52) is subtracted from Eq. (3.57), the differ-

solution in its standard state of x; = 1 or as the chemical potential of a solution in
its state of x; = 1 and f; = 1, i.e., a; = 1. No real solution can have f; = 1 when
x; = 1; so, the standard state pertains to the same hypothetical solution as the standard
state of an ideal solution.
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ence, i.e., w;(real) — u; (ideal), is the chemical-potential change Ay,
arising from interactions between the solute particles (ions in the case of
electrolyte solutions). That is,

w; (real) — u; (ideal) = Au;_; (3.58)
and, therefore,
Ap;_; = RT Inf; (3.59)

Thus, the activity coefficient is a measure of the chemical-potential change
arising from ion-ion interactions. There are several well-established meth-
ods of experimentally determining activity coefficients, and these methods are
treated 1n adequate detail in standard treatises (cf. Further Reading at the
end of this section).

Now, according to the Debye-Hiickel theory, the chemical-potential
change Au;_; arising from ion-ion interactions has been shown to be

given by

Auir = ——-5 (3.51)
Hence, by combining Eqgs. (3.51) and (3.58), the result is
- N 4(z;6,)

Thus, the Debye-Hiickel ionic-cloud model for ion-ion interactions has
permitted a theoretical calculation of activity coefficients resulting in Eq.
(3.59).

The activity coefficient in Eq. (3.59) arises from the formula (3.57)
for the chemical potential, in which the concentration of the species i is
expressed in mole fraction x; units. But one can also express the concen-
tration in moles per liter of solution (molarity) or in moles per kilogram
of solvent (molality). Thus, alternate formulas for the chemical potential
of a species i in an ideal solution read

u; = pu(c) + RTIn ¢; (3.61)
and
u; = p(m) + RT In m; (3.62)

where c; and m; are the molarity and molality of the species 7, respectively;

and u®(c) and pp(m), the corresponding standard chemical potentials.
When the concentration of the ionic species in a rea! solution is ex-

pressed as a molarity ¢; or a molality m;, there are corresponding activity
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coefficients y, and y,, and corresponding expressions for y;

pi = ud(c) + RTInc; + RT Iny, (3.63)
and
pi = pd(m) + RTInm; + RT Iny,, (3.64)

3.4.3. The Activity Coefficient of a Single lonic Species Cannot
Be Measured

Before the activity coefficients calculated on the basis of the Debye-
Hiickel model can be compared with experiment, there arises a problem
similar to one faced in the discussion of ion-solvent interactions (Chap-
ter 2).

There, it was realized the heat of hydration of an individual ionic
species could not be measured because such a measurement would involve
the transfer of ions of only one species into a solvent instead of ions of two
species with equal and opposite charges. Even if such a transfer were
physically possible, it would result in a charged solution'and, therefore,
an extra, undesired interaction between the ions and the electrified solution.
The only way out was to transfer a neutral electrolyte (an equal number
of positive and negative ions) into the solvent, but this meant that one
could only measure the heat of interactions of a salt with the solvent and
this experimental quantity could not be separated into the individual ionic
heats of hydration.

Here, in the case of ion-ion interactions, the desired quantity is the
activity coefficient f;,* which depends through Eq. (3.57) on u; — u2. This
means that one seeks the free-energy change of an ionic solution per mole
of ions of a single species i. To measure this quantity, one would have a
problem similar to that experienced with ion-solvent interactions, namely,
the measurement of the change of free energy of a solution, resulting from
a change in the concentration of one ionic species only.

This change in free energy associated with the addition of one ionic
species only would include an undesired work term representing the elec-
trical work of interaction between the ionic species being added and the
charged solution.t To avoid free-energy changes associated with interacting

t The solution may not be initially charged but will become so once an ionic species is
added to it.

1 The use of the symbol y for the activity coefficients when the concentration is expressed
in molarities and molalities should be noted. When the concentration is expressed as a
mole fraction, f; has here been used. For dilute solutions, the numerical values of
activity coefficients for these different systems of units are almost the same.
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with a solution, it is necessary that, after changing the concentration of the
ionic species, the electrolytic solution should end up uncharged and elec-
troneutral. This aim is easily accomplished by adding an electroneutral
electrolyte containing the ionic species i. Thus, the concentration of sodium
ions can be altered by adding sodium chloride. The solvent, water, maintains
its electroneutrality when the uncharged ionic lattice (containing two ionic
species of opposite charge) is dissolved in it.

When ionic lattices, i.e., salts, are dissolved instead of individual ionic
species, one eliminates the problem of ending up with charged solutions
but another problem emerges. If one increases the concentration of sodium
ions by adding the salt sodium chloride, one has perforce to produce a
simultaneous increase of the concentration of chloride ions. This means,
however, that there are two contributions to the change in free energy
associated with a change in salt concentration: (1) the contribution of the
positive ions, and (2) the contribution of the negative ions.

Since neither the positive nor the negative ions can be added separately,
the individual contributions of the ionic species to the free energy of the
system cannot be determined. Thus, the activity coefficients of individual
ions, which depend by, e.g., (3.63) on the free-energy changes when the
particular individual species alone is added to the solution, are inaccessible
to experimental measurement. One can only measure the activity coefficient
of the net electrolyte, 1.e., of at least two ionic species together. It is necessary,
therefore, to establish a conceptual link between the activity coefficient of
an electrolyte in solution (that quantity accessible to experiment) and that

of only one of its ionic species [not accessible to experiment, but calculable
theoretically from (3.60)].

3.4.4. The Mean lonic Activity Coefficient

Consider a uni-univalent electrolyte MA (e.g., NaCl). The chemical
potential of the M+ ions is [cf. (3.58)]

pars = Wi+ + RTIn xy -+ RT In fips (3.65)
and the chemical potential of the A~ ions is

pa- = Ua- + RTIn xs- + RTIn f- (3.66)
Adding the two expressions, one obtains

pur + pia- = (uae + pa-) + RT In(xyexa-) + RT In(fye fa-)  (3.67)
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What has been obtained here is the change in the free energy of the system
due to the addition of 2 moles of ions—1 mole of M+ ions and 1 mole of
A~ ions—which are contained in 1 mole of electroneutral salt MA.

Now, suppose that one is only interested in the average contribution
to the free energy of the system from 1 mole of both M+ and A~ ions.
One has to divide Eq. (3.67) by 2

Um+ + Pa- _ ﬂgﬁ + /‘?x—
2 2

+ RTIn(xyox, )t + RTIn(fifu )t (3.68)

At this stage, one can define several new quantities

o phae
R (3.69)
0 0
bl
pl =LA Ea (3.70)
Xy = (Xy+xp- )b (3.71)
and
[+ = (fufs- ) (3.72)

What is the significance of these quantities u,, ©,% x,, and f,? It is
obvious they are all average quantities—the mean chemical potential wx .,
the mean standard chemical potential ., the mean ionic mole fraction x .,
and the mean ionic-activity coefficient f,. In the case of x, and u,° the
arithmetic mean (half the sum) is taken because free energies are additive;
but, in the case of x, and f,, the geometric mean (the square root of the
product) is taken because the effects of mole fraction and activity coefficient
on free energy are multiplicative.

In this notation, Eq. (3.68) for the average contribution of a mole of
ions to the free energy of the system becomes

py=p+ RTInx, + RTInf, (3.73)

since a mole of ions is produced by the dissolution of half a mole of salt.
In other words, u, is half the chemical potential uy, of the salt.’

%”MA = U4 -'—‘——"[A:to + RT In X4 —+ RTlnf:t (3.74)

t The symbol uma should not be taken to mean that molecules of MA exist in the solu-
tion; uma is the observed free-energy change of the system resulting from the disso-
lution of a mole of electrolyte.
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Thus, a clear connection has been set up between observed free-energy
changes uyy consequent upon the change from a state in which the two
ionic species of a salt are infinitely far apart to a state corresponding to the
given concentration, and its mean ionic-activity coefficient /.. Hence the
value of f is experimentally measurable. This mean ionic-activity coefficient
cannot, however, be experimentally split into the individual ionic-activity
coeflicients. All that can be obtained from £, is the product of the individual
ionic-activity coefficients [Eq. (3.72)]. The theoretical approach must hence
be to calculate the activity coefficients f, and f_ for the positive and negative
ions [¢f. Eq. (3.60)] and combine them through Eq. (3.72) into a mean
ionic-activity coefficient f, which can be compared with the experimentally
derived mean ionic-activity coefficient.

3.4.5. The Conversion of Theoretical Activity-Coefficient Ex-
pressions into a Testable Form

Individual ionic-activity coefficients are experimentally inaccessible
(Section 3.4.3); hence, it is necessary to relate the theoretical individual
activity coefficient f; [Eq. (3.64)] to the experimentally accessible mean
ionic-activity coefficient £ so that the Debye-Hiickel model can be tested.

The procedure is to make use of the relation (3.72)

[+ = (fuSa-)t (3.72)

of which the general form for an electrolyte which dissolves to give v, z.-

valent positive ions and »_ z_-valent negative ions can be shown to be (cf.
Appendix 3.3)

fe= S (3.75)

where f, and f_ are the activity coefficients of the positive and negative
ions, and
v=uv, + v_ (3.76)

By taking logarithms of both sides of Eq. (3.75), the result is

Inf, = % . Inf, +v_Inf) (3.77)

At this stage, the Debye-Hiickel expressions (3.60) for £, and f_ can
be introduced into Eq. (3.77) to give

1 NA€02

Inf, = ——

4% 2 2
= | 2%eRT x(v,z,2+v_z2) (3.78)
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Since the solution as a whole is electroneutral, v,z, must be equal to
v_z_, and, therefore,

v,z 4+vzl=vzz +wv.z,.2
=2z,z_ (v, +v.)
=2z,Z ¥ (3.79)
Using this relation in Eq. (3.78), one obtains

Ny(z,z_)es?

Inf, = — e RT (3.80)
Now, one can substitute for » from Eq. (3.43)
47 3
- 052, 2
y ( S nzle, ) (3.43)

but, before this substitution is made, » can be expressed in a different form.
Since

0 — CiNa
i 1000 (3.81)
where ¢ is the concentration in moles per liter, it follows that
N 4e¢?
0,2,2 -2
>, nlz2e? = 7000 > €iZ; (3.82)

Prior to the Debye-Hiickel theory, 4 3 ¢;z;* had been empirically introduc-
ed by Lewis as a quantity of importance in the treatment of ionic solutions.
Since it quantifies the charge in an electrolytic solution, it was known as
the ionic strength and given the symbol

I=1%13¢z? (3.83)

In terms of the ionic strength I, x can be written as [cf. Egs. (3.43), (3.82),
and (3.83)]

87N se2 \}
=—2\ I} .84
% (1000ng) I (3.84)
or as
% — BI} (3.85)
where

_ [ 87N e\
B = (m) (3.86)
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TABLE 3.3

Value of the Parameter B for Water at Various Temperatures

Temperature, °C 10-%B
0 0.3248
10 0.3264
20 0.3282
25 0.3291
30 0.3301
35 0.3312
40 0.3323
50 0.3346
60 0.3371
80 0.3426
100 0.3488

Values of B for water at various temperatures are given in Table 3.3.
On the basis of the expression (3.85) for », Eq. (3.80) becomes

2
Inf, = — %&_ BIt (3.87)
or
1 NAeoz
_ ]
108/ = — 5353 e B2 )] (3.88)

For greater compactness, one can define a constant 4 given by

1 NA802

4= 3303 2eRT

B (3.89)

and write Eq. (3.88) in the form
logf, = —A(z,z_)} (3.90)
For 1:1-valent electrolytes, z, = z_ =1 and I = ¢, and, therefore,
logf, = —Act (3.91)

Values of the constant A for water at various temperatures are given in
Table 3.4.

In Eqgs. (3.90) and (3.91), the theoretical mean ionic-activity coefficients
are in a form directly comparable with experiment. A quantitative compari-
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TABLE 3.4

Values of Constant A for Water at Various Temperatures

Temperature, °C Values of constant 4

0 0.4918
10 0.4989
20 0.5070
25 0.5115
30 0.5161
40 0.5262
50 0.5373
60 0.5494
80 0.5767
100 0.6086

son of the experimentally observed activity coefficients with those calculated
with the Debye-Huckel model can now be made.

Further Reading

1. H. S. Harned and B. B. Owen, The Physical Chemistry of Electrolytic Solution,
3rd ed., Reinhold Publishing Corp., New York, 1958.

2. R. A. Robinson and R. H. Stokes, Electrolytic Solutions, Butterworth’s
Publications, Ltd., London, 1959.

3. G. Kortim, Treatise on Electrochemistry, Elsevier, Amsterdam, 1965.

3.5. THE TRIUMPHS AND LIMITATIONS OF THE DEBYE-
HUCKEL THEORY OF ACTIVITY COEFFICIENTS

3.5.1. How Well Does the Debye-Hiickel Theoretical Expression
for Activity Coefficients Predict Experimental Values?

The approximate theoretical equation
logf, = —A(z,z_)I} (3.90)

indicates that the logarithm of the activity coefficient must decrease linearly
with the square root of the ionic strength or, in the case of 1:l-valent
electrolytes,’ with c?. Further, the slope of the log /. versus I? straight line
can be unambiguously evaluated from fundamental physical constants and

t That is, I = % 2 ¢;z2 For a 1:1 electrolyte, I = ¥(c;12 + ¢;13). As¢; =¢; = ¢, [ = c.
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TABLE 3.5

Experimental Values of Activity Coefficients of Various Electrolytes at
Different Concentrations at 25°C

I:1 electrolyte, HCI

Concentration, molal 0.0001 0.0002 0.0005 0.001 0.002
Mean activity coefficient 0.9891 0.9842 0.9752 0.9656 0.9521

2:1 electrolyte, CaCl,

Concentration, (moles per liter) 0.0018 0.0061 0.0095
Mean activity coefficient 0.8588 0.7745 0.7361

2:2 electrolyte, CdSO,

Concentration, molal 0.0005 0.001 0.005
Mean activity coefficient 0.774 0.697 0.476

from (z,z_). Finally, the slope does not depend on the particular electrolyte
(1.e., whether it is NaCl or KBr, etc.) but only on its valence type, i.e., on
the charges borne by the ions of the electrolyte, whether it is a 1:1-valent
or 2:2-valent electrolyte, etc. These are clear-cut predictions.

Even before any detailed comparison with experiment, one can use
an elementary spot check: At infinite dilution, where the interionic forces
are negligible, does the theory yield the activity coefficient which one
would expect from experiment, i.e., unity? At infinite dilution, ¢ or
I — 0, which means that logf, — 0 or f, — 1. The properties of an ex-
tremely dilute solution of ions should be the same as those of a solution
containing nonelectrolyte particles. Thus, the Debye-Hiickel theory comes
out successfully from the infinite dilution test.

Further, if one takes the experimental values of the activity coefficient
(Table 3.5) at extremely low electrolyte concentration and plots log f,
versus I curves, it is seen that: (1) They are linear (¢f. Fig. 3.19), and (2)
they are grouped according to the valence type of the electrolyte (Fig. 3.20).
Finally, when one compares the calculated and observed slopes, it becomes
clear that there is excellent agreement to an error of 40.59, (Table 3.6 and
Fig. 3.21) between the results of experiment and the conclusions emerging
from an analysis of the ionic-cloud model of the distribution of ions in an
electrolyte. Since Eq. (3.90) has been found to be valid at limiting low
electrolyte concentrations, it is generally referred to as the Debye-Hiickel
limiting law.
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O EXPERIMENTAL POINTS

5 7
V7 xic

Fig. 3.19. The logarithm of the experimental mean ac-
tivity coefficient of HCI varies linearly with the square
root of the ionic strength.

The success of the Debye-Hiickel limiting law is no mean achievement.
One has only to think of the complex nature of the real system, of the
presence of the solvent which has been recognized only through a dielectric

TABLE 3.6

Experimental and Calculated Values of the Slope of log fy — A/I” for Alcohol
Water Mixtures at 25°C

Slope

Solvent mole fraction water  Dielectric constant
Observed Calculated

1:1 type of salt, Croceo tetranitro diamino cobaltiate

1.00 78.8 0.50 0.50

0.80 54.0 0.89 0.89
1:2 type of salt, Croceo sulfate

1.00 78.8 1.10 1.08

0.80 54.0 1.74 1.76

3:1 type of salt, Luteo iodate
1.00 78.8 1.52 1.51
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Fig. 3.20. The experimental log f versus /} straight-

line plots for different electrolytes can be grouped ac-

cording to valence type.
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constant, of the simplicity of the coulomb force law used, and, finally, of
the fact that the ions are not point charges, to realize (¢f. Table 3.6) that
the simple ion-cloud model has been brilliantly successful—almost unex-
pectedly so. It has grasped the essential truth about electrolytic solutions,
albeit about solutions of extreme dilution. The success of the model is so
remarkable and the implications so wide (see Section 3.5.6), that the Debye—
Hiickel approach is to be regarded as one of the most significant pieces of
theory in the ionics part of electrochemistry.

It is a theme of this book that model-oriented electrochemistry is to a
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Fig. 3.21. The comparison of the experimentally
observed mean activity coefficients of HC! and those
that are calculated from the Debye—Hiickel limiting
law.

great extent the result of the application of electrostatics to chemistry.
From this point of view, the Debye-Hiickel approach is an excellent example
of electrochemical theory. Electrostatics is introduced into the problem
in the form of Poisson’s equation, and the chemistry is contained in the
Boltzmann distribution law and the concept of true electrolytes (Section
3.2). The union of the electrostatic and chemical modes of description to
give the linearized Poisson-Boltzmann equation illustrates therefore a
characteristic development of electrochemical thinking.

It is hence not surprising that the Poisson-Boltzmann approach has
been used frequently in computing interactions between charged entities.
Mention may be made of the Gouy theory (Fig. 3.22) of the interaction

\ 1
_-10N CLOUD OF\
EXCESS | EXCESS

CHARGE GHARGE
DENSITY

\
} S
— L

-
DISTANGE FROM ELECTRODE

o S

(a) (b)

Fig. 3.22. An electrode immersed in an ionic solution is
often enveloped by an ionic cloud [see Fig. 3.22 (a)] in
which the excess charge density varies with distance as
shown in Fig. 3.22 (b).
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SEMICONDUGTOR = ELECTROLYTE | EXCESS |\

~ | CHARGE

| DENSITY
/- / s
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! DISTANGE IN TO SEMI-
ELEGTRONS OR HOLES
(a) (b)

Fig. 3.23. (a) A space charge produced by excess electrons or
holes often exists inside the semiconductor. (b) The space charge
density varies with distance from the semiconductor—electrolyte
interface.

between a charged electrode and the ions in a solution (see Section 7.4).
Other examples are the distribution (Fig. 3.23) of electrons or holes inside
a semiconductor and in the vicinity of the semiconductor electrolyte inter-
face (see Section 7.7), and the distribution (Fig. 3.24) of charges near a
polyelectrolyte molecule or a colloidal particle (see Section 7.8).

However, one must not overstress the triumphs of the Debye-Hiickel
limiting law [Eq. (3.90)]. Models are always simplifications of reality.
They never treat all its complexities, and, thus, there can never be a perfect
fit between experiment and the predictions based on a model.

What, then, are the inadequacies of the Debye-Hiickel limiting law?
One does not have to look far. If one examines the experimental log f,
versus I? curve, not just in the extreme dilution regions, but at higher
concentrations, it turns out that the simple Debye—Hiickel limiting law
falters. The plot of log f, versus I? is a curve (Fig. 3.25 and Table 3.7)

ELECTROLYTE

A

. EXGESS | \_
GHARGE b
COLLOIDAL DENSITY \
PARTIGLE
S :
\ -‘"-_,___
ION CLOUD OF § ===
EXCESS CHARGE DISTANCE FROM SURFAGE OF
GOLLOIDAL PARTIGLE
(a) (b)

Fig. 3.24. (a) A colloidal particle is surrounded by an ionic
cloud of excess charge density. (b) The excess charge density
in the cloud varies with distance from the surface of the col-
loidal particle.
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Fig. 3.25. The experimental log £ versus /3 curve is a
straight line only at extremely low concentrations.

and not a straight line as promised by Eq. (3.90). Further, the curves depend
not only on valence type (e.g., 1:1 or 2:2) but also (Fig. 3.26) on the part-
icular electrolyte (e.g., NaCl or KCl).

It appears that the Debye-Hiickel law is the law for the tangent to
the log /. versus I? curve at very low concentrations, say, up to 0.0l N for
1:1 electrolytes in aqueous solutions. At higher concentrations, the model
must be improved. What refinements can be made?

\ NaCl

0-6r- KCI

05 | ! ! |
0 05 0 1-5 20 25

Jm —

Fig. 3.26. Even though NaCl and KCI are
1 :1 electrolytes, their activity coefficients
vary in different ways with concentration
directly one examines to higher concentra-
tions.
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TABLE 3.7

Comparison of Calculated [Eq. (3.90)] and Experimental Values of log £,
for NaCl at 25°C

Concentration, molal — log f+ experimental — log f+ calculated
0.001 0.0155 0.0162
0.002 0.0214 0.0229
0.005 0.0327 0.0361
0.01 0.0446 0.0510
0.02 0.0599 0.0722

3.5.2. lons Are of Finite Size, Not Point Charges

One of the general procedures for refining a model which has been
successful in an extreme situation is to liberate the theory from its approx-
imations. So one has to recall what approximations have been used to
derive the Debye-Hiickel limiting law. The first one that comes to mind
is the point-charge approximation. One now asks: Is it reasonable to
consider ions as point charges?

It has been shown (cf. Section 3.3.8) that the mean thickness x»~! of
the ionic cloud depends on the concentration. As the concentration of a
1:1 electrolyte increases from 0.001N to 0.01N to O.1N, x! decreases from
about 100 to 30 to about 10 A. This means that the relative dimensions of
the ion cloud and of the ion change with concentration. Whereas the radius
of the cloud is 100 times the radius of the ion at 0.001N, it is only about 10
times the dimensions of an ion at 0.1N. Obviously, under these latter cir-
cumstances, an ion cannot be considered a geometrical point charge in
comparison with a dimension only 10 times its size (Fig. 3.27). The more
concentrated the solution, i.e., the smaller the size %! of the ion cloud
(Section 3.3.8), the less valid is the point-charge approximation.

If, therefore, one wants the theory to be applicable to 0.1N solutions
or to solutions of even higher concentration, the finite size of the ions must
be introduced into the mathematical formulation.

To remove the assumption that ions can be treated as point charges,

t Another approximation in the Debye-Hiickel model involves the use of Poisson’s
equation, which is based on the smearing-out of the charges into a continuously varying
charge density. At high concentrations, the mean distance between charges is low, and
the ions see each other as discrete point charges, not as smoothed-out charges. Thus,
the use of Poisson’s equation becomes less and less justified as the solution becomes
more and more concentrated.
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ION GLOUD
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Fig. 3.27. At 0.1N, the thickness of the
ion cloud is only 10 times the radius of the
central ion.

it is necessary, at first, to recall at what stage in the derivation of the theory
the assumption was invoked.

The linearized P-B equation involved neither the point-charge approx-
imation nor any considerations of the dimensions of the ions. Hence, the
basic differential equation

1 0 . 0w\
= (A = (21)
and its general solution, i.e.,
e—x‘r e+x'r
v, =A " + B . (3.28)

can be taken as the basis for the generalization of the theory for finite-sized
ions.

As before (cf. Section 3.3.7), the integration constant B must be zero
because, otherwise, one cannot satisfy the requirement of physical sense
that, as r — oo, p — 0. Hence, Eq. (3.28) reduces to

e—Kr

v, = A (3.29)

r

In evaluating the constant 4, a procedure different from that used
after (3.29) is adopted. The charge dg in any particular spherical shell
(of thickness dr) situated at a distance r from the origin is, as argued earlier,

dq = p,Anr® dr (3.36)

The charge density p, is obtained thus

e[l a [,0p\] & ,
o= 7o (P )| =~ a e (3.34)

and, inserting the expression for y, from Eq. (3.29), one obtains

& e-xf
0r = — x4

- - (3.92)
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Fig. 3.28. For a finite-sized ion, the ion atmos-
phere starts at a distance a from the center of the
reference ion.

Thus, by combining Eqgs. (3.36) and (3.92),
dq = — AxPe(e"r dr) (3.93)

The total charge in the ion cloud ¢.,,q iS, on the one hand, equal to —z;e,
[¢f. Eq. (3.41)] as required by the electroneutrality condition and, on the
other hand, the result of integrating dg. Thus,
Gelovd = —Zi€y = ﬁo dqdr = — Ax’¢c ﬁo e~ dr (3.94)
What lower limit should be used for the integration? In the point-
charge model, one used a lower limit of zero, meaning that the ion cloud
commences from zero (i.e., from the surface of a zero-radius ion) and
extends to infinity. But now the ions are taken to be of finite size, and a
lower limit of zero is obviously wrong. The lower limit should be a distance
corresponding to the distance from the ion center at which the ionic atmos-
phere starts (Fig. 3.28).
As a first step, one can use for the lower limit of the integration a
distance parameter which is greater than zero. Then, one can go through
the mathematics and later worry about the physical implications of the

lon-size parameter. Let this procedure be adopted and symbol a be used
for the ion-size parameter.
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One has, then,

J Zo dq dr = — Ax*e f e~r dr

a
OC

= —-Asf xre=*") doer (3.95)

a

As before (¢f. Appendix 3.2), one can integrate by parts, thus,

oG 20
f wre=CN dur = — [xre™"]7 + f e~ *" dur
a a

= nae™™* — [e~*"]7 (3.96)

Hence, inserting Eq. (3.96) in Eq. (3.95), one obtains

foo dqdr = —Aece (1 + xa) = —z;e, 3.97)
a
from which
_Zigy €%
A= e 1 (3.98)

Using this value of A4 in Eq. (3.30), one obtains a new and less approx-
imate expression for the potential y, at a distance r from a finite-size central

ion,

z,e, € e’
= 3.99
¥r e 1+xa r ( )

3.5.3. The Theoretical Mean lonic-Activity Coefficient in the
Case of lonic Clouds with Finite-Sized lons

Once again (¢f. Section 3.3.9), one can use the law of superposition
of potentials to obtain the ionic-atmosphere contribution wg,,q to the
potential g, at a distance r from the central ion. From Eq. (3.46), i.e.,

Yeloud = ¥Yr — VYion (3~46)

it follows by substitution of the expression (3.99) for v, and Eq. (3.44)
for ;o that
_zigg e zie,
Yeloud = =7 T ™ or

_ Z:€, exta-n _ ]
T er [1+xa ! (3.100)
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It will be recalled, however, that, in order to calculate the activity
coefficient from the expressions

RTInf; = Au,_; (3.59)
and
N Z:€e
Aui_y = Az =y (3.3)
ie., from
. Nyzie,
Inf, = SRT (3.101)

it is necessary to know w, which is the potential at the surface of the ion
due to the surrounding ions, i.e., due to the cloud. Since, in the finite-
ion-size model, the ion is taken to have a size a, it means that y is the value
of Yeoua at r = g,

¥ = ¥Ycioud r=a (3102)

The value of p,uq at r = a is got by setting r = a in Eq. (3.100). Hence,

VAL A 1
ex ' 1 4+ xa

(3.103)

Y = Yelovd(r=a) = —
By substitution of the expression (3.103) for » = weiouarr-a) in Eq.
(3.101), one obtains

L N 4(z.e0)? 1
Infi = = 5 Rt T 7

(3.104)

This individual ionic-activity coefficient can be transformed into a mean
ionic-activity coefficient by the same procedure as for the Debye-Hiickel
limiting law (¢f. Section 3.4.12). On going through the algebra, one finds
that the expression for log f, in the finite-ion-size model is

Az z )

o (3.105)

logf, =

It will be recalled, however, that the thickness »! of the ionic cloud can
be written as [Eq. (3.89)]
x = BIt (3.85)

Using this notation, one ends up with the final expression

Az z )t

1T Balt (3.106)

logf, = —
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If one compares Eq. (3.105) of the finite-ion-size model with Eq. (3.90)
of the point-charge approximation, it is clear that the only difference be-
tween the two expressions is that the former contains a term 1/(1 + xa)
in the denominator. Now, one of the tests of a more general version of a
theory is the correspondence principle, i.e., the general version of a theory
must reduce to the approximate version under the conditions of applicability
of the latter. Does the Eq. (3.105) from the finite-ion-size model reduce to
Eq. (3.90) from the point-charge model?

Rewrite Eq. (3.105) in the form

1

logf, = —A(z.z_)I? =

(3.107)

and consider the term a/x~!. As the solution becomes increasingly dilute,

the radius %! of the ionic cloud becomes increasingly large compared with

the ion size, and, simultaneously, a/»! becomes increasingly small comp-
ared with unity, or

1

— ~ 1 3.108

] — a/z‘l ( )

Thus, directly the solution is sufficiently dilute to make a <€ »71, ie., to

make the ion size insignificant in comparison with the radius of the ion

atmosphere, the finite-ion-size model Eq. (3.105) reduces to the correspond-

ing Eq. (3.90) of the point-charge model because the extra term | (1 — a/x71)

tends to unity
A(z_z )2
_[ (=-=-) ] e A ) (3.109)
l — %d a<€xl

The physical significance of a’»7' <1 is that, at very low concen-
trations, the ion atmosphere has such a large radius compared with that
of the ion that one need not consider the ion as having a finite size a.
Considering a'»~! <« 1 is tantamount to reverting to the point-charge model.

One can now proceed rapidly to compare this theoretical expression
for log f, with experiment: but what value of the ion-size parameter should
be used? The time has come to worry about the precise physical meaning
of the parameter @ which was introduced to allow for the finite size of ions.

3.5.4. The lon-Size Parameter a

One can at first try to speculate on what value of the ion-size parameter
is appropriate. A lower limit is the sum of the crystallographic radii of the
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SUM OF THE CRYSTALLOGRAPHIC
RADIl OF THE IONS

(a)

WATER MOLEGULE

SUM OF THE RADH OF
THE SOLVATED IONS

SOLVATION SHELLS
CRUSHED

(c)

Fig. 3.29. The ion-size parameter cannot
be (a) less than the sum of the crystallo-
graphic radii of the ions or (b) more than the
sum of the radii of the solvated ions and is
most probably (c) less than the sum of the
radii of the solvated ions because the solva-
tion shells may be crushed.

positive and negative ions present in solution; ions cannot come closer
than this distance [Fig. 3.29(a)]. But, in a solution, the ions are generally
solvated (¢f. Chapter 2). So perhaps the sum of the solvated radii should
be used [Fig. 3.29(b)]. However, when two solvated ions collide, is it not
likely [Fig. 3.29(c)] that their hydration shells are crushed to some extent?
This means that the ion-size parameter a should be greater than the sum
of the crystallographic radii and perhaps less than the sum of the solvated
radii. It should best be called the mean distance of closest approach, but,
beneath the apparent wisdom of this term, there lies a measure of ignorance.
For example, an attempted calculation of just how crushed together two
solvated ions are would involve many difficulties.
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Fig. 3.30. Procedure for recovering the ion-size pa-
rameter from experiment and then using it to produce a
theoretical log f« versus /¢ curve which can be compared
with an experimental curve.

To circumvent the uncertainty in the quantitative definition of a, it
is best to regard it as a parameter in Eq. (3.106), i.e., a quantity, the numer-
ical value of which is left to be calibrated or adjusted on the basis of exper-
iment. The procedure (Fig. 3.30) is to assume that the expression for log f
[Eq. (3.106)] is correct at one concentration, then to equate this theoretical
expression to the experimental value of log f. corresponding to that con-
centration, and to solve the resulting equation for a. Once the ion-size
parameter. or mean distance of closest approach. is thus obtained at one
concentration. the value can be used for the calculation of values of the
activity coefficient over a range of other and higher concentrations. Then,
the situation is regarded as satisfactory if the value of a obtained from
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experiments at one concentration can be used in Eq. (3.106) to reproduce
the results of experiments over a range of concentrations.

3.5.5. Comparison of the Finite-lon-Size Model with Experiment

After taking into account the fact that ions have finite dimensions
and cannot therefore be treated as point charges, the following expression
has been derived for the logarithm of the activity coefficient:

_ A(zz )R

logf, =

How does the general form of this expression compare with the Debye-

Hiickel limiting law as far as agreement with experiment is concerned? To

see what the extra term (1 + Bal?)~! does to the shape of the log f, versus
I curve, one can expand it in the form of a binomial series

L g4t —x+ X = (3.110)
e U A TR -

and use only the first two terms. Thus,

1
_ =1 - } .
[ Ball 1 — Bal (3.111)
and, therefore,
logfy, ~ —A(z,z_)I¥(1 — Bal?) (3.112)
~ —A(z,z_)I? + constant(/?)? (3.113)

This result is encouraging. It shows that the logf, versus I? curve
give values of log f, higher than those given by the limiting law, the devia-
tion increasing with concentration. In fact, the general shape of the predicted
curve (Fig. 3.31) is very much on the right lines.

The values of the ion-size parameter, or closest distance of approach,
which are recovered from experiment are physically reasonable for many
electrolytes. They lie around 3 to 5 A, which is greater than the sum of the
crystallographic radii of the positive and negative ions and pertains more
to the solvated ion (Table 3.8).

By picking on a reasonable value of the ion-size parameter g, inde-
pendent of concentration, it is found that, in many cases, Eq. (3.112) gives
a very good fit with experiment, often for ionic strengths up toward 0.1.
For example, on the basis of a = 4.0 A, Eq. (3.112) gives an almost exact



228 CHAPTER 3

0
~-002
log {t
-0:04
-0-06
PPN I T N Y A I A B A O O
o0l 003 005 007 0909 Ol 013 015
43

Fig. 3.31. Comparison of the experimental mean activity
coefficients with theory for Eq. (3.112).

agreement up to 0.02M in the case of sodium chloride (Fig. 3.32 and
Table 3.9).

The ion-size parameter a has done part of the job of extending the
range of concentration in which the Debye-Hiickel theory of ionic clouds
agrees with experiment. But has it done the whole job? One must there-
fore start looking for discrepancies between theory and fact and for the
less satisfactory features of the model.

The most obvious drawback of the finite-ion-size version of the Debye-
Hiickel theory lies in the fact that a is an adjustable parameter. When
parameters which have to be taken from experiment enter a theory, they
imply that the physical situation has been incompletely comprehended or
is too complex to be mathematically analyzed. In contrast, the constants
of the limiting law were calculated without recourse to experiment.

The best illustration of the fact that a has to be adjusted is its con-
centration dependence. As the concentration changes, the ion-size para-

TABLE 3.8

Values of len-Size Parameter for a Few Electrolytes

Salt a, A
HCl 4.5
HBr 52
LiCl 43
NacCl 4.0

KCl 3.6
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Fig. 3.32. Comparison of the experimental mean activity
coefficients for sodium chloride with the theoretical log 7.
versus /? curve based on Eq. (3.112) with a = 4.0 A,

meter has to be modified (Fig. 3.33). Further, for some electrolytes at
higher concentrations, a has to assume quite impossible (i.e., large negative,
irregular) values to fit the theory to experiment (Table 3.10).

Evidently, there are factors at work in an electrolytic solution which
have not yet been reckoned with, and the ion-size parameter is being asked
to include the effects of all these factors simultaneously, even though these
other factors probably have little to do with the size of the ions and

TABLE 3.9

Experimental Mean Activity Coefficients and Those Calculated from Eq.
(3.112) with a = 4.0 A at 25°C at Various Concentrations of NaCl

Experimental mean activity coefficient

Molalit Calculated
Y — log f+
0.001 0.0155 0.0155
0.002 0.0214 0.0216
0.005 0.0327 0.0330
0.01 0.0446 0.0451

0.02 0.0599 0.0609
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Fig. 3.33. The variation of the ion-size pa-
rameter with concentration of NaCl
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may vary with concentration. If this were so, the ion-size parameter a,
calculated back from experiment, would indeed have to vary with con-
centration. The problem, therefore, is: What factors, forces, and interactions
were neglected in the Debye-Hiickel theory of ionic clouds?

3.5.6. The Debye-Hiickel Theory of lonic Solutions: An As-
sessment

It is appropriate at this stage to register the achievement in the theory
of ionic solutions described thus far.

Starting with the point of view that ion-ion interactions are bound to
operate in an electrolytic solution, the chemical-potential change Ay;_;,
in going from a hypothetical state of noninteracting ions to a state in which
the ions of species i interact with the ionic solution, was considered a
quantitative measure of these interactions. As a first approximation, the

TABLE 3.10
Values of Parameter a at Higher Concentrations

Concentration, .\ ¢ of 4 for HCI, A Concentration, ..\ of 4 for LiCl, &

molality molality

1 13.8 2 41.3
1.4 24.5
1.8 85.0 2.5 —141.9
2 —411.2
2.5 - 279 3 — 264

3 — 14.8
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ion—ion interactions were assumed to be purely coulombic in origin. Hence,
the chemical-potential change arising from the interactions of species i with
the electrolytic solution is given by the Avogadro number times the elec-
trostatic work W resulting from taking a discharged reference ion and
charging it up in the solution to its final charge. In other words, the charging
work is given by the same formula as that used in the Born theory of solv-

ation, 1.€.,
z.e
W — 0
5 ¥

(3.3)

where p is the electrostatic potential at the surface of the reference ion,
contributed by the other ions in the ionic solution. The problem, therefore,
was to obtain a theoretical expression for the potential y. This involved
an understanding of the distribution of ions around a given reference ion.

It was in tackling this apparently complicated task that appeal was
made to the Debye-Hiickel simplifying model for the distribution of ions
in an ionic solution. This model treats only one ion—the central ion—
as a discrete charge, the charge of the other ions being smoothed out to
give a continuous charge density. Because of the tendency of negative
charge to accumulate near a positive ion, and vice versa, the smoothed-out
positive and negative charge densities do not cancel out; rather, their
imbalance gives rise to an excess local charge density o,, which of course
dies away toward zero as the distance from the central ion is increased. Thus,
the calculation of the distribution of ions in an electrolytic solution reduces
to the calculation of the variation of excess charge density g, with distance
r from the central ion.

The excess charge density g, was taken to be given, on the one hand,
by Poisson’s equation of electrostatics

e 1 d [, dy,
A (r dr) (3.17)

and, on the other, by the linearized Boltzmann distribution law

0,2, 2
niz"€g"Yr

o= — 21K (3.18)
The result of equating these two expressions for the excess charge density
is the fundamental partial differential equation of the Debye-Hiickel model,

the linearized P-B equation (¢f. Fig. 3.34)

L (rz-——d"")=x2¢, (3.21)

r¢ dr
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Fig. 3.34. Steps in

the derivation of the linearized Poisson—Boltzmann equation.
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where

%2 = '———84,:;1 z niozizeoz (3.20)

By assuming that ions can be regarded as point charges, the solution
of the linearized P-B equation turns out to be (¢f. Fig. 3.35)

z;e, €777
Y =

(3.33)

& r

Such a variation of potential with distance from a typical (central or ref-
erence) ion corresponded to a charge distribution which can be expressed
as a function of distance r from the central 1on by

_Zgg , €7

0= " 4% (3.35)

This variation of the excess charge density with distance around the
central or typical ion yielded a simple physical picture. A reference positive
ion can be thought of as being surrounded by a cloud of negative charge
of radius »~1. The charge density in this ionic atmosphere, or ionic cloud,
decays in the manner indicated by Eq. (3.35). Thus, the interactions be-
tween a reference ion and the surrounding ions of the solution is equivalent
to the interactions between the reference ion and the ionic cloud which, in
the point-charge model, sets up at the central ion a potential o, given by

Z:€,

Yeloud = — (3.49)

ex1
The magnitude of central ion-ionic-cloud interactions is given by intro-
ducing the expression for y,.q into the expression (3.3) for the work of
creating the ionic cloud, i.e., setting up the ionic interaction situation.
Thus, one obtains for the energy of such interactions

Ny (z:€0)
2ex!

Api g = (3.51)

In order to test these predictions, attention was drawn to an empirical
treatment of ionic solutions. For solutions of noninteracting particles, the
chemical-potential change in going from a solution of unit concentration
to one of concentration x; is described by the equation

w; — nd = RTIn x; (3.52)
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Fig. 3.35. Steps in the solution of the linearized Poisson—Boltzmann equation for
point-charge ions.
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However, in the case of an electrolytic solution in which there are
ion—-ion interactions, it is experimentally observed that

p; — %~ RTIn x;

If one is unaware of the nature of these interactions, one can write an
empirical equation to compensate for one’s ignorance

RTlnfi = ('Ll,1 - ,uio) — RT In X; (358)

and say that solutions behave ideally if the so-called activity coefficient f;
is unity, i.e., RTIn f; = 0, and, in real solutions, f; 7 1. It is clear that f;
corresponds to a coefficient to account for the behavior of ionic solutions,
which differs from those in which there are no charges. Thus, f; accounts
for the interactions of the charges, so that

_ Nu(zieo)

2ex1

RTln_fi = Aﬂi—f = (360)

Thus arose the Debye-Hiickel expression for the experimentally in-
accessible individual ionic-activity coefficient. This expression could be
transformed into the Debye-Hiickel limiting law for the experimentally
measurable mean ionic-activity coefficient ‘

logf, = —A(z,z_)I} (3.90)

which would indicate that the logarithm of the mean activity coefficient
falls linearly with the square root of the ionic strength I(= % ] ¢;z?),
which is a measure of the total number of electric charges in the solution.

The agreement of the Debye-Hiickel limiting law with experiment
improved with decreasing electrolyte concentration and became excellent
for the limiting tangent to the log f, versus I? curve. With increasing con-
centration, however, experiment deviated more and more from theory, and,
at concentrations above 1N, even showed an increase in f, with increase
of concentration, whereas theory indicated a continued decrease.

An obvious improvement of the theory consisted in removing the
assumption of point-charge ions and taking into account their finite size.
With the use of an ion-size parameter a, the expression for the mean ionic-
activity coefficient became
_ A(zz)B

o (3.105)

]‘ng:t =

However, the value of the ion-size parameter a could not be theor-
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3.8. TEMPORARY ION ASSOCIATION IN AN ELECTROLYTIC
SOLUTION: FORMATION OF PAIRS, TRIPLETS, ETC.

3.8.1. Positive and Negative lons Can Stick Together: lon-Pair
Formation

The Debye-Hiickel model assumed the ions to be in almost random
thermal notions and therefore in almost random positions. The slight
deviation from randomness was pictured as giving rise to an ionic cloud
around a given ion, a positive ion (of charge +ze,) being surrounded by
a cloud of excess negative charge (—ze,). However, the possibility was
not considered that some negative ions in the cloud would get sufficiently
close to the central positive ion in the course of their quasi-random solution
movements so that their thermal translational energy would not be sufficient
for them to continue their independent movements in the solution. Bjerrum
suggested that a pair of oppositely charged ions may get trapped in each
other’s coulombic field. An ion pair may be formed.

The ions of the pair together form an ionic dipole on which the net
charge is zero. Within the ionic cloud, the locations of such uncharged ion
pairs are completely random, since, being uncharged, they are not acted
upon by the coulombic field of the central ion. Further, on the average,
a certain fraction of the ions in the electrolytic solution will be stuck to-
gether in the form of ion pairs. This fraction must now be evaluated.

3.8.2. The Probability of Finding Oppositely Charged lons near
Each Other

Consider a spherical shell of thickness dr and of radius r from a refer-
ence positive ion (Fig. 3.41). The probability P, that a negative ion is in
the spherical shell is proportional, firstly, to the ratio of the volume 47r? dr
of the shell to the total volume ¥V of the solution; secondly, to the total
number N_ of negative ions present; and, thirdly, to the Boltzmann factor
exp(— UJkT), where U is the potential energy of a negative ion at a distance
r from a cation, i.e.,

P, = 4ar? dr —NV e UNT (3.122)

Since N_/V is the concentration n_° of negative ions in the solution
and
- 2
z_z. e,
Er

U= (3.123)
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Fig. 3.41. The probability P, of finding an
ion of charge z_e, in a dr-thick spherical
shell of radius r around a reference ion of
charge z. e,

it is clear that

P, = (4nn_O)r2e>-=+e*/erkT Jp (3.124)
or, writing
Z_Z,ey
A=—*0 3.125
ekT ( )
one has
P, = (4nn_%)eVrr® dr (3.126)

A similar equation is valid for the probability of finding a positive
ion in a dr-thick shell at a radius r from a reference negative ion. Hence,
in general, one may write for the probability of finding an i type of ion in
a dr-thick spherical shell at a radius r from a reference ion k of opposite
charge

P, = (4nn0)er? dr (3.127)
where
_ Ziieq
A= kT (3.128)

This probability of finding an ion of one type of charge near an ion
of the opposite charge varies in an interesting way with distance (Fig. 3.42).
For small values of r, the function P, is dominated by e*” rather than by r?,
and, under these conditions, P, increases with decreasing r; for large values
of r, e — 1 and P, increases with increasing r because the volume 47r2 dr
of the spherical shell increases as r2. It follows from these considerations
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Fig. 3.42. The probability P, of finding an
ion of one type of charge as a function of
distance.

that P, goes through a minimum for a particular, critical value of r. This
conclusion may also be reached by computing the number of ions in a
series of shells, each of an arbitrarily selected thickness of 0.1 A (Table 3.14).

3.8.3. The Fraction of lon Pairs, According to Bjerrum

If one integrates P, between a lower and an upper limit, one gets the
probability P, of finding a negative ion within a distance from the reference
positive ion, defined by the limits. Now, for two oppositely charged ions
to stick together to form an ion pair, it is necessary that they should be
close enough for the coulombic attractive energy to overcome the thermal
energy which scatters them apart. Let this ‘“‘close-enough™ distance be g.
Then, one can say that an ion pair will form when the distance r between a

TABLE 3.14

Number of lons in Spherical Shells at Various Distances

Number of ions in shell x 1022

r, A

Of opposite charge Of like charge
2 1.77n; 0.001#;
2.5 1.37n; 0.005#;
3 1.22n; 0.01n;
3.57 1.18#; 0.02n;
4 1.20n, 0.03n;

5 1.31n, 0.081;
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positive and negative ion becomes less than g. Thus, the probability of ion-
pair formation is given by the integral of P, between a lower limit of a,
the closest distance of approach of ions, and an upper limit of g.

Now, the probability of any particular event is the number of times
that the particular event is expected to be observed divided by the total
number of observations. Hence, the probability of ion-pair formation is
the number of ions of species i which are associated into ion pairs divided
by the total number of i ions, i.e., the probability of ion-pair formation is
the fraction 0 of ions which are associated into ion pairs. Thus,

6 = fq P, dr = fq 47tn 0e*r? dr : (3.129)
a a

It is seen from Figure 3.43 that the integral in Eq. (3.129) is the area
under the curve between the limits r = a and r = ¢q. But it is obvious that,
as r increases past the minimum , the integral becomes greater than unity.
Since, however, 0 is a fraction, this means that the integral diverges.

In this context, Bjerrum took the arbitrary step of cutting off the
integral at the value of r = g corresponding to the minimum of the P,
versus r curve. This minimum can easily be shown (Appendix 3.4) to

occur at
Z_Z e A

9=—S27 =75 (3.130)

Bjerrum justified this step by arguing that it is only short-range
coulombic interactions that lead to ion-pair formation and, further, when
a pair of oppositely charged ions are situated at a distance apart of r > g,
it is more appropriate to consider them free ions.

o 2 1a 6 8 &

Fig. 3.43. The integral in Eq. (3.129) is
the area under the curve between the limits
r=a and r = q.
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Bjerrum concluded, therefore, that ion-pair formation occurs when
an ion of one type of charge, e.g., a negative ion, enters a sphere of radius ¢
drawn around a reference ion of the opposite charge, e.g., a positive ion.
But it is the ion-size parameter which defines the closest distance of ap-
proach of a pair of ions. The Bjerrum hypothesis can therefore be stated
as follows: If a < g, then ion-pair formation can occur; if a > g the ions
remain free (Fig. 3.44).

Now that the upper limit of the integral in Eq. (3.129) has been taken
to be ¢ = 4/2, the fraction of ion pairs is given by carrying out the inte-
gration. It is

d=3/2 At
0=4am;>f e rtdr (3.131)

a

For mathematical convenience, a new variable y is defined as

A 2q

Ion-pair formation not possible
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Fig. 3.44. (a) lon-pair formation occurs if a < g;
(b) ion-pair formation does not occur if a > g.
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TABLE 3.15

Value of the Integral [8e¥y—* dy
b Jbevytdy b fbevytdy b [bevytdy

2.0 0 3 0.326 10 4.63
2.1 0.0440 3.5 0.442 15 93.0
22 0.0843 4 0.550
24 0.156 5 0.771
2.6 0.218 6 1.041
2.8 0.274

Hence, in terms
dix 3.5)

where

of the new variable y, Eq. (3.131) becomes (c¢f. Appen-

2\3 .
6 = dnnp (E%Zk:;—"—) j eytdy (3.133)

A z.z.e? 2
b=2 = ;ak; =_a€ (3.134)

Bjerrum has tabulated the integral f;’ e¥y~* dy for various values of b (Table
3.15). This means that, by reading off the value of the corresponding

TABLE 3.16

Fraction of Association, §, of Univalent lons in Water at 18°C

a X 108 cm:

gla:

2.82 2.35 1.76 1.01 0.70 0.47
2.5 3 4 7 10 15

ct, moles liter!

0.0001
0.0002
0.0005
0.001
0.002
0.005
0.01
0.02
0.05
0.1

0.2

— — —_ — 0.001 0.027
— — — —_ 0.002 0.049
— — — 0.002 0.006 0.106
— 0.001 0.001 0.004 0.011 0.177
0.002 0.002 0.003 0.007 0.021 0.274
0.002 0.004 0.007 0.016 0.048 0.418
0.005 0.008 0.012 0.030 0.030 0.529
0.008 0.013 0.022 0.053 0.137 0.632
0.017 0.028 0.046 0.105 0.240 0.741
0.029 0.048 0.072 0.163 0.336 0.804
0.048 0.079 0.121 0.240 0.437 0.854

F ¢ in moles liter™' = 1000n,%/N.
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integral and substituting for the various other terms in (3.133), the degree
of association of an electrolyte may be computed if the ion sizes, the dielec-
tric constant, and the concentrations are known (Table 3.16).

3.8.4. The lon-Association Constant K4 of Bjerrum

The quantity 0 yields a clear idea of the fraction of ions which are
associated in ion pairs in a particular electrolytic solution, at a given con-
centration. It would, however, be advantageous if each electrolyte, e.g.,
NaCl, BaSO,, and La(NO,),;, were assigned a particular number which
would reveal, without going through the calculation of 0, the extent to
which the ions of that electrolyte associate in ion pairs. The quantitative
measure chosen to represent the tendency for ion-pair formation was
guided by historical considerations.

Arrhenius in 1887 had suggested that many properties of electrolytes
could be explained by a dissociation hypothesis: The neutral molecules AB
of the electrolyte dissociate to form ions A* and B—, and this dissociation
is governed by an equilibrium

AB = A+ + B- (3.135)

Applying the law of mass action to this equilibrium, one can define a
dissociation constant

a +dpg-

K= (3.136)

Q4B
By analogy,’ one can define an association constant K, for ion-pair
formation. Thus, one can consider an equilibrium between free ions (the
positive M+ ions and the negative A~ ions) and the associated ion pairs
(symbolized IP)
M+ + A-=1IP (3.137)

The equilibrium sanctions the use of the law of mass action

_ p
K, = ———aMmA- (3.138)

t The analogy must not be carried too far because it is only a formal analogy. Arrhenius’s
hypothesis can now be seen to be valid for ionogens (i.e., potential electrolytes), in
which case the neutral ionogenic molecules (e.g., acetic acid) consist of aggregates
of atoms held together by covalent bonds. What is under discussion here is ion as-
sociation, or ion-pair formation, of ionophores (i.e., true electrolytes). In these ion

pairs, the positive and negative ions retain their identity as ions and are held together
by electrostatic attraction.
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where the a’s are the activities of the relevant species. From (3.138), it is
seen that K, is the reciprocal of the ion pair’s dissociation constant.

Since 6 is the fraction of ions in the form of ion pairs, c is the con-
centration of ion pairs, and (1 — 6)c is the concentration of free ions. If
the activity coefficients of the positive and negative free ions are f, and f_,
respectively, and that of the ion pairs is f;p, one can write

K. — Ocfip
AT 1= 0)f (1 —0)f
B 6 1 fip
=T=0F ¢ 7./ (3.139)

or, using the definition of the mean ionic-activity coefficient [¢f. Eq. (3.72)],

0 1 fip
Ky = =07 </, (3.140)

Some simplifications can now be introduced. The ion-pair activity
coefficient fip is assumed to be unity because deviations of activity coef-
ficients from unity are ascribed in the Debye-Hiickel theory to electrostatic
interactions. But ion pairs are not involved in such interactions owing to
their zero charge, and, hence, they behave ideally like uncharged particles,
e, fip = 1.

Further, in very dilute solutions: (1) The ions rarely come close enough
together (i.e., to within a distance ¢) to form ion pairs, and one can consider
6 <1orl — 0~ 1;(2)activity coefficients tend to unity, i.e., f; or f, — 1.

Hence, under these conditions of very dilute solutions, Eq. (3.140)
becomes

K, N.g. (3.141)

and, substituting for 0 from Eq. (3.133), one has

dand [z.z e \* b
— ! vy—4 d 3.142
Ka ¢ ( ekT )Ley Y ( )
But
0 _ cN,
nd = 1000 (3.143)

and, therefore,

4daN z.Z e, \® b
Ki =600 ( AT ) [evav (3.144)
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TABLE 3.17

lon Association Constant KA: Extent to Which lon-Pair Formation Occurs

Salt Solvent Temp:?ture, € K

KBr Acetic acid 30 6.20 9.09 x 10¢
KBr Ammonia —34 22 5.29 x 10%
CsCl Ethanol 25 24.30 1.51 x 10?
KI Acetone 25 20.70 1.25 x 10?
KI Pyridine 25 12.0 4.76 x 10°

The value of the association constant provides an indication of whether
ion-pair formation is significant. The higher the value of K,, the more
extensive is the ion-pair formation (Table 3.17).

What are the factors which increase K, and therefore increase the
degree of ion-pair formation? From Eq. (3.144), it can be seen that the
factors which increase K, are (1) low dielectric constant ¢; (2) small ionic
radii, which lead to a small value of @ and hence [¢f. Eq. (3.134)] to a
large value of the upper limit b of the integral in Eq. (3.144); and (3) large
z, and z_.

These ideas based on Bjerrum’s picture of ion-pair formation have
received considerable experimental support. Thus, in Fig. 3.45, the associa-
tion constant is seen to increase markedly with decrease of dielectric con-

L L !
05 I-0 I'5
log £

Fig. 3.45. Variation of the association con-
stant K, with dielectric constant for 1:1
salts.
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Fig. 3.46. Variation of 6, the fraction of associated ions,
with a, the closest distance of approach (i.e., the ion-size
parameter).

stant.' The dependence of ion-pair formation on the distance of closest
approach is seen in Fig. 3.46.

When numerical calculations are carried out with these equations, the
essential conclusion which emerges is that, in aqueous media, ion association
in pairs scarcely occurs for 1:1-valent electrolytes but can be of import-
ance for 2:2-valent electrolytes. The reason is that K, depends on z, z_
through Eq. (3.142). In nonaqueous solutions, most of which have dielectric
constants much less than that of water (¢ = 80), ion association is extremely
important.

3.8.5. Activity Coefficients, Bjerrum’s lon Pairs, and Debye’s
Free lons

What direct role do the ion pairs have in the Debye-Hiickel electro-
static theory of activity coefficients? The answer simply is: None. Since
ion pairs carry no net charge,* they are ineligible for membership in the

t But the critical dielectric constant above which there is no more ion-pair formation
(as indicated by Fig. 3.45) is really a result of the arbitrary cutting off of ion-pair
formation at the distance g [see (3.8.6)].

! Remember that the equations for the Bjerrum theory, as presented here, are correct
only for electrolytes yielding ions of the same valency z, i.e., only for symmetrical
1:1- or 2:2-valent electrolytes.
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ion cloud where the essential qualification is charge. Hence, ion pairs are
dismissed from a direct consideration in the Debye-Hiickel theory.

This does not mean that the Debye-Hiickel theory gives the right
answer when there is ion-pair formation. The extent of ion-pair formation
decides the value of the concentration to be used in the ionic-cloud model.
By removing a fraction 6 of the total number of ions, only a fraction 1 — 6
of the ions remain for the Debye-Hiickel treatment which interests itself
only in the free charges. Thus, the Debye-Hiickel expression for the activity
coefficient [Eq. (3.106)] is valid for the free ions with two important modi-
fications: (1) Instead of there being a concentration ¢ of ions, there is only
(1 — 6)c; the remainder Oc is not reckoned with owing to association.
(2) The closest distance of approach of free ions is ¢ and not a. These
modifications yield

logf, — — A(z,z_)/ (1 — 0)c (3.145)
I + Bgy/ (1 — 0)c

This calculated mean activity coefficient is related to the measured
mean activity coefficient of the electrolyte (f,).s by the relation (for the
derivation, see Appendix 3.6)

(f£dovs = (L — O)f, (3.146)

or
log (f+)obs = logfy + log (1 — 0)

_ AV A =0 o0 —0) (3147
I + Bgy/ (I — 6)c

This equation indicates how the activity coefficient depends on the
extent of ion association. In fact, this equation constitutes the bridge be-
tween the treatment of solutions of true electrolytes and solutions of poten-
tial electrolytes. More will be said on this matter in the chapter on protons
in solution (Chapter 5), part of which deals with potential electrolytes.

3.8.6. The Fuoss Approach to lon-Pair Formation

Despite a considerable agreement with experiment, there are several
unsatisfactory features of the Bjerrum picture of ion-pair formation.

The first and most important defect of the Bjerrum picture is that it
identifies, as ion pairs, ions which are not in physical contact; the pair is
counted as an ion pair as long as r < q.
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A second defect is the arbitrary way in which the probability integral
[¢f. Eq. (3.129)] is terminated at g, i.e., the distance r at which P, is a
minimum. The physical reasons supporting this choice of a condition for
the maximum distance between ion centers at which pairing can occur are
not clear. In practice, however, the value of the ion-association constant
K, is not very sensitive to the actual numerical value chosen for the upper
limit of the integral.

It is these considerations that led Fuoss to present an alternative picture
of ion pairs and a derivation of the ion-association constant.

An ion pair is defined in a straighforward manner. For the period of
time (irrespective of its magnitude) that two oppositely charged ions are
in contact and, therefore, at a distance apart of r = a, the two ions function
as neutral dipole and can be defined as an ion pair.

To get an idea of the fraction of ion pairs in a solution, the following
thought experiment is a useful device. Let the motion of all the ions in a
solution be frozen and the number of oppositely charged pairs of ions in
contact be counted. If this thought experiment is repeated many times, then
one can determine N;p, the average number of ion pairs. The fraction of
ion' pairs is then obtained by dividing N;p by N;, the average number of
ions.

The calculation of the fraction 8 = Njp/N, is done as follows. Suppose
Z positive ions and an equal number of negative ions exist in a volume V
of solution. Let there be Z;p 10n pairs; then there will be Zy; = Z — Z;p
free ions of each species. Now, suppose one adds dZ positive ions and a
similar number of anions. Since some of these will form ion pairs and some
will remain free,

The number 6Z;; of added negative ions that remain free is propor-
tional, firstly, to the number 6Z of negative ions added to the solution and,
secondly, to the free volume V — v, Z not occupied by positive ions of
volume v,

8Zp = (V — v,2) 6Z (3.149)

The number dZ;p of negative ions that form pairs with positive ions is
proportional, firstly, to the number 6Z of negative ions added; secondly,
to the volume v,Zy; occupied by free positive ions; and, finally, to the
Boltzmann factor e-U*T  where U is the potential energy of a negative
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ion in contact with a positive ion?
6ZIP = 2v +ZF[e_‘U/kT 0Z (3150)

By dividing (3.150) by (3.149), the result is

0Zyp Zoe"UNT §7
52 = 5y 52 (3.151)
or
0Zip =2, 7 57 3.152
P = V+m7)— F1 O4p; (3.152)

If dilute solutions are considered, one can neglect the total volume v,Z
occupied by positive ions in comparison with the volume V of the solution,

and, therefore,

~U/kT
2 e 07 (3.153)

0Z;y =
Ik %

Now suppose that one adds increments 6Z of positive and negative
ions until a total of N positive and N negative ions are present in the vol-
ume V; this process is equivalent to integrating Eq. (3.153). The result is

Nec o
NIP - V V+e U/kT (3.154)
or
2
NI‘/" =(N;‘) v e UKL (3.155)

As a model of an ion pair, one can consider the positive ions to be
charged spheres of radius a and the negative ions point charges; this gives a
contact distance of a. Then, the volume of the cations is given by

v, = $nad (3.156)

With regard to U, the potential energy of a negative ion in contact
with a positive ion, the following argument is adopted. It has been shown
that the potential y, at a distance r from a central positive ion [cf. Eq.
(3.99)] is

z,€4 1

Y, = P 'I-‘?x‘““a exla=") (3.157)

t The factor of 2 comes in because, when one adds 4Z negative ions, one must also add
dZ positive ions, which also form ion pairs.



264 CHAPTER 3

Hence, at the surface of the positive ion of radius r = a, the potential is

_z,e 1
Yrea = "0 1 + xa (3.158)
It follows therefore that
o _ z,zef 1
U= —z_ e,y = a1 L ra (3.159)
or
U  z,z_ef 1 b
kT ~— cakT 1 +xa 1 + xa (3.160)
where, as stated earlier,
_zyzeq
kT (3.134)

By substituting for U/kT and v, from (3.160) and (3.156) in (3.155), the
result is

Nip — Ne\2 4 3 Lb/(1+xa)

£ _( V) St (3.161)
But

NIP . CIPNA . OCNA

- = ™MP T 77000 T 1000 (3.162)

where cp and c are the concentration of ion pairs and electrolyte, respec-
tively, and

NFI - (1 - O)CNA

2 V1) (3.163)

where cpy is the concentration of free ions. Hence, from (3.161), (3.162),
and (3.163).
(1 —0)2c*N 4

fc = — 600 (—;na"') b/ (1+xa) (3.164)

If the solution is considered dilute, 1 — 6 ~ 1, and, since »~! — oo (i.e.,
x— 0),
b/ U+xa)  ob (3.165)

in which case, Eq. (3.164) becomes

aPed (3.166)
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But, according to (3.141),

Ky =— (3.141)

Hence, according to the Fuoss approach, the ion-association constant is
given by

———=. g%eb (3.167)

in contrast to the following expression (3.144) from the Bjerrum approach,

4aN Z,Z_e,2\3 b
Ka = 100(34 ( TskTO ) fz eyt dy (3.144)

Now, the Bjerrum theory was tested in solutions with dielectric constants
such that b = z,z_e,%/eakT = 2g/a was significantly larger than 2. Under
these conditions, the following approximation to the integral in Bjerrum’s
equation can be made

2 b
(ka_;o )3 fb ey-3 dy ~a3-—2— (3.168)
2

in which case, the ion association constant of Bjerrum reduces to

47'ENAa3 eb
Ka =000 5 (3.169)

As the dielectric constant of the solution is changed, b = z z_e?2/eakT
changes, but this change is overshadowed by the e? term. In other words,
the experimental results do not permit a distinction between the Fuoss
dependence of K, on e® [¢f. Eq. (3.167)] and the Bjerrum dependence of
K, on /b [¢f. Eq. (3.169)]. However, the Fuoss approach is to be preferred
because it is on a simpler and less arbitrary conceptual basis.

3.8.7. From lon Pairs to Triple lons to Clusters of lons...

The coulombic attractive forces given by z,z_e?/er? are large when
the dielectric constant is small. When nonaqueous solvents of low dielectric
constant are used, the values of dielectric constant are small. In such
solutions of electrolytes, therefore, it has already been stated that ion-pair
formation is favored.

Suppose that the electrostatic forces are sufficiently strong; then, it
may well happen that the ion-pair “dipoles” may attract ions and triple ions
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are formed thus

M+ + (A“M+)ion pair — [M+A_M+]triplc ion (3170)
or
A~ + (M*A7 )i pair = [A_M+A_]triplc ion (3.171)

From uncharged ion pairs, charged triple ions have been formed. These
charged triple ions play a role in determining activity coefficients. Triple-
ion formation has been suggested in solvents for which ¢ << 15. The question
of triple-ion formation can be treated on the same lines as has been done
for ion-pair formation.

Further decrease of dielectric constant below a value of about 10 may
make possible the formation of still larger clusters of four, five, or more
ions. In fact, there is some evidence for the clustering of ions into grcups
containing four ions in solvents of low dielectric constant.
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